Agregacje czasu zapisu

Zapytania w Cloud Firestore umożliwiają znajdowanie dokumentów w dużych kolekcjach. Aby uzyskać statystyki dotyczące właściwości kolekcji jako całości, możesz agregować dane w jej obrębie.

Dane możesz agregować w czasie odczytu lub zapisu:

  • Agregacje czasu odczytu obliczają wynik w chwili wysłania żądania. Cloud Firestore obsługuje zapytania zbiorcze count(), sum() i average() w czasie odczytu. Zapytania zbiorcze w czasie odczytu są łatwiejsze do dodania do aplikacji niż zapytania zbiorcze w czasie zapisu. Więcej informacji o zapytaniach agregacji znajdziesz w artykule Sumaryczne przedstawianie danych za pomocą zapytań agregacji.

  • Agregacje w czasie zapisu obliczają wynik za każdym razem, gdy aplikacja wykonuje odpowiednią operację zapisu. Agregacje na etapie zapisu wymagają więcej pracy, ale możesz ich używać zamiast agregacji na etapie odczytu z jednego z tych powodów:

    • Chcesz słuchać wyników agregacji w celu uzyskania aktualizacji w czasie rzeczywistym. Zapytania agregacyjne count(), sum()average() nie obsługują aktualizacji w czasie rzeczywistym.
    • Chcesz przechowywać wynik agregacji w pamięci podręcznej po stronie klienta. Zapytania agregacyjne count(), sum()average() nie obsługują buforowania.
    • Zbierasz dane z dziesiątek tysięcy dokumentów każdego z użytkowników i uwzględniasz koszty. W przypadku mniejszej liczby dokumentów agregacje w czasie odczytu są tańsze. W przypadku dużej liczby dokumentów w agregacji agregacja na etapie zapisu może być tańsza.

Możesz zaimplementować agregację na etapie zapisu, korzystając z transakcji po stronie klienta lub z funkcji Cloud Functions. W następnych sekcjach znajdziesz informacje o wdrażaniu agregacji na etapie zapisu.

Rozwiązanie: agregacja w czasie zapisu z transakcją po stronie klienta

Rozważ aplikację z lokalnymi rekomendacjami, która pomaga użytkownikom znaleźć świetne restauracje. To zapytanie zwraca wszystkie oceny danej restauracji:

Sieć

db.collection("restaurants")
  .doc("arinell-pizza")
  .collection("ratings")
  .get();

Swift

Uwaga: ta usługa nie jest dostępna na urządzeniach z systemem watchOS i nie można jej używać w przypadku App Clip.
do {
  let snapshot = try await db.collection("restaurants")
    .document("arinell-pizza")
    .collection("ratings")
    .getDocuments()
  print(snapshot)
} catch {
  print(error)
}

Objective-C

Uwaga: ta usługa nie jest dostępna na urządzeniach z systemem watchOS i nie można jej używać w przypadku App Clip.
FIRQuery *query = [[[self.db collectionWithPath:@"restaurants"]
    documentWithPath:@"arinell-pizza"] collectionWithPath:@"ratings"];
[query getDocumentsWithCompletion:^(FIRQuerySnapshot * _Nullable snapshot,
                                    NSError * _Nullable error) {
  // ...
}];

Kotlin+KTX

db.collection("restaurants")
    .document("arinell-pizza")
    .collection("ratings")
    .get()

Java

db.collection("restaurants")
        .document("arinell-pizza")
        .collection("ratings")
        .get();

Zamiast pobierać wszystkie oceny, a potem obliczać informacji zbiorczych, możemy przechowywać te informacje w samym dokumencie restauracji:

Sieć

var arinellDoc = {
  name: 'Arinell Pizza',
  avgRating: 4.65,
  numRatings: 683
};

Swift

Uwaga: ta usługa nie jest dostępna na urządzeniach z systemem watchOS i nie można jej używać w przypadku App Clip.
struct Restaurant {

  let name: String
  let avgRating: Float
  let numRatings: Int

}

let arinell = Restaurant(name: "Arinell Pizza", avgRating: 4.65, numRatings: 683)

Objective-C

Uwaga: ta usługa nie jest dostępna na urządzeniach z systemem watchOS i nie można jej używać w przypadku App Clip.
@interface FIRRestaurant : NSObject

@property (nonatomic, readonly) NSString *name;
@property (nonatomic, readonly) float averageRating;
@property (nonatomic, readonly) NSInteger ratingCount;

- (instancetype)initWithName:(NSString *)name
               averageRating:(float)averageRating
                 ratingCount:(NSInteger)ratingCount;

@end

@implementation FIRRestaurant

- (instancetype)initWithName:(NSString *)name
               averageRating:(float)averageRating
                 ratingCount:(NSInteger)ratingCount {
  self = [super init];
  if (self != nil) {
    _name = name;
    _averageRating = averageRating;
    _ratingCount = ratingCount;
  }
  return self;
}

@end

Kotlin+KTX

data class Restaurant(
    // default values required for use with "toObject"
    internal var name: String = "",
    internal var avgRating: Double = 0.0,
    internal var numRatings: Int = 0,
)
val arinell = Restaurant("Arinell Pizza", 4.65, 683)

Java

public class Restaurant {
    String name;
    double avgRating;
    int numRatings;

    public Restaurant(String name, double avgRating, int numRatings) {
        this.name = name;
        this.avgRating = avgRating;
        this.numRatings = numRatings;
    }
}
Restaurant arinell = new Restaurant("Arinell Pizza", 4.65, 683);

Aby zapewnić spójność tych agregacji, należy je aktualizować za każdym razem, gdy do kolekcji podrzędnej dodawana jest nowa ocena. Jednym ze sposobów zapewnienia spójności jest wykonanie dodania i aktualizacji w ramach jednej transakcji:

Sieć

function addRating(restaurantRef, rating) {
    // Create a reference for a new rating, for use inside the transaction
    var ratingRef = restaurantRef.collection('ratings').doc();

    // In a transaction, add the new rating and update the aggregate totals
    return db.runTransaction((transaction) => {
        return transaction.get(restaurantRef).then((res) => {
            if (!res.exists) {
                throw "Document does not exist!";
            }

            // Compute new number of ratings
            var newNumRatings = res.data().numRatings + 1;

            // Compute new average rating
            var oldRatingTotal = res.data().avgRating * res.data().numRatings;
            var newAvgRating = (oldRatingTotal + rating) / newNumRatings;

            // Commit to Firestore
            transaction.update(restaurantRef, {
                numRatings: newNumRatings,
                avgRating: newAvgRating
            });
            transaction.set(ratingRef, { rating: rating });
        });
    });
}

Swift

Uwaga: ta usługa nie jest dostępna na urządzeniach z systemem watchOS i nie można jej używać w przypadku App Clip.
func addRatingTransaction(restaurantRef: DocumentReference, rating: Float) async {
  let ratingRef: DocumentReference = restaurantRef.collection("ratings").document()

  do {
    let _ = try await db.runTransaction({ (transaction, errorPointer) -> Any? in
      do {
        let restaurantDocument = try transaction.getDocument(restaurantRef).data()
        guard var restaurantData = restaurantDocument else { return nil }

        // Compute new number of ratings
        let numRatings = restaurantData["numRatings"] as! Int
        let newNumRatings = numRatings + 1

        // Compute new average rating
        let avgRating = restaurantData["avgRating"] as! Float
        let oldRatingTotal = avgRating * Float(numRatings)
        let newAvgRating = (oldRatingTotal + rating) / Float(newNumRatings)

        // Set new restaurant info
        restaurantData["numRatings"] = newNumRatings
        restaurantData["avgRating"] = newAvgRating

        // Commit to Firestore
        transaction.setData(restaurantData, forDocument: restaurantRef)
        transaction.setData(["rating": rating], forDocument: ratingRef)
      } catch {
        // Error getting restaurant data
        // ...
      }

      return nil
    })
  } catch {
    // ...
  }
}

Objective-C

Uwaga: ta usługa nie jest dostępna na urządzeniach z systemem watchOS i nie można jej używać w przypadku App Clip.
- (void)addRatingTransactionWithRestaurantReference:(FIRDocumentReference *)restaurant
                                             rating:(float)rating {
  FIRDocumentReference *ratingReference =
      [[restaurant collectionWithPath:@"ratings"] documentWithAutoID];

  [self.db runTransactionWithBlock:^id (FIRTransaction *transaction,
                                        NSError **errorPointer) {
    FIRDocumentSnapshot *restaurantSnapshot =
        [transaction getDocument:restaurant error:errorPointer];

    if (restaurantSnapshot == nil) {
      return nil;
    }

    NSMutableDictionary *restaurantData = [restaurantSnapshot.data mutableCopy];
    if (restaurantData == nil) {
      return nil;
    }

    // Compute new number of ratings
    NSInteger ratingCount = [restaurantData[@"numRatings"] integerValue];
    NSInteger newRatingCount = ratingCount + 1;

    // Compute new average rating
    float averageRating = [restaurantData[@"avgRating"] floatValue];
    float newAverageRating = (averageRating * ratingCount + rating) / newRatingCount;

    // Set new restaurant info

    restaurantData[@"numRatings"] = @(newRatingCount);
    restaurantData[@"avgRating"] = @(newAverageRating);

    // Commit to Firestore
    [transaction setData:restaurantData forDocument:restaurant];
    [transaction setData:@{@"rating": @(rating)} forDocument:ratingReference];
    return nil;
  } completion:^(id  _Nullable result, NSError * _Nullable error) {
    // ...
  }];
}

Kotlin+KTX

private fun addRating(restaurantRef: DocumentReference, rating: Float): Task<Void> {
    // Create reference for new rating, for use inside the transaction
    val ratingRef = restaurantRef.collection("ratings").document()

    // In a transaction, add the new rating and update the aggregate totals
    return db.runTransaction { transaction ->
        val restaurant = transaction.get(restaurantRef).toObject<Restaurant>()!!

        // Compute new number of ratings
        val newNumRatings = restaurant.numRatings + 1

        // Compute new average rating
        val oldRatingTotal = restaurant.avgRating * restaurant.numRatings
        val newAvgRating = (oldRatingTotal + rating) / newNumRatings

        // Set new restaurant info
        restaurant.numRatings = newNumRatings
        restaurant.avgRating = newAvgRating

        // Update restaurant
        transaction.set(restaurantRef, restaurant)

        // Update rating
        val data = hashMapOf<String, Any>(
            "rating" to rating,
        )
        transaction.set(ratingRef, data, SetOptions.merge())

        null
    }
}

Java

private Task<Void> addRating(final DocumentReference restaurantRef, final float rating) {
    // Create reference for new rating, for use inside the transaction
    final DocumentReference ratingRef = restaurantRef.collection("ratings").document();

    // In a transaction, add the new rating and update the aggregate totals
    return db.runTransaction(new Transaction.Function<Void>() {
        @Override
        public Void apply(@NonNull Transaction transaction) throws FirebaseFirestoreException {
            Restaurant restaurant = transaction.get(restaurantRef).toObject(Restaurant.class);

            // Compute new number of ratings
            int newNumRatings = restaurant.numRatings + 1;

            // Compute new average rating
            double oldRatingTotal = restaurant.avgRating * restaurant.numRatings;
            double newAvgRating = (oldRatingTotal + rating) / newNumRatings;

            // Set new restaurant info
            restaurant.numRatings = newNumRatings;
            restaurant.avgRating = newAvgRating;

            // Update restaurant
            transaction.set(restaurantRef, restaurant);

            // Update rating
            Map<String, Object> data = new HashMap<>();
            data.put("rating", rating);
            transaction.set(ratingRef, data, SetOptions.merge());

            return null;
        }
    });
}

Transakcje zapewniają spójność danych zbiorczych z podstawową kolekcją. Więcej informacji o transakcjach w Cloud Firestore znajdziesz w artykule Transakcje i zbiorowe zapisy.

Ograniczenia

Rozwiązanie pokazane powyżej polega na agregowaniu danych za pomocą biblioteki klienta Cloud Firestore, ale musisz mieć na uwadze te ograniczenia:

  • Bezpieczeństwo: transakcje po stronie klienta wymagają przyznania klientom uprawnień do aktualizowania danych zbiorczych w Twojej bazie danych. Chociaż możesz ograniczyć ryzyko związane z takim podejściem, pisząc zaawansowane reguły zabezpieczeń, może to nie być odpowiednie w każdej sytuacji.
  • Obsługa offline – transakcje po stronie klienta nie będą się udawać, gdy urządzenie użytkownika będzie offline. Oznacza to, że musisz uwzględnić ten przypadek w swojej aplikacji i ponownie spróbować w odpowiednim momencie.
  • Skuteczność – jeśli transakcja zawiera wiele operacji odczytu, zapisu i aktualizacji, może wymagać wysłania wielu żądań do backenduCloud Firestore. Na urządzeniu mobilnym może to zająć sporo czasu.
  • Szybkość zapisu – to rozwiązanie może nie działać w przypadku często aktualizowanych agregacji, ponieważ dokumenty w Cloud Firestore można zaktualizować maksymalnie raz na sekundę. Poza tym, jeśli transakcja odczytuje dokument zmieniony poza transakcją, ponawia wiele prób, a potem kończy się niepowodzeniem. Aby znaleźć odpowiednie obejście dla agregacji, która wymaga częstszych aktualizacji, zapoznaj się z rozproszonymi licznikami.

Rozwiązanie: agregacja w czasie pisania za pomocą Cloud Functions

Jeśli transakcje po stronie klienta nie są odpowiednie dla Twojej aplikacji, możesz użyć funkcji w chmurze, aby aktualizować informacje zbiorcze za każdym razem, gdy do restauracji zostanie dodana nowa ocena:

Node.js

exports.aggregateRatings = functions.firestore
    .document('restaurants/{restId}/ratings/{ratingId}')
    .onWrite(async (change, context) => {
      // Get value of the newly added rating
      const ratingVal = change.after.data().rating;

      // Get a reference to the restaurant
      const restRef = db.collection('restaurants').doc(context.params.restId);

      // Update aggregations in a transaction
      await db.runTransaction(async (transaction) => {
        const restDoc = await transaction.get(restRef);

        // Compute new number of ratings
        const newNumRatings = restDoc.data().numRatings + 1;

        // Compute new average rating
        const oldRatingTotal = restDoc.data().avgRating * restDoc.data().numRatings;
        const newAvgRating = (oldRatingTotal + ratingVal) / newNumRatings;

        // Update restaurant info
        transaction.update(restRef, {
          avgRating: newAvgRating,
          numRatings: newNumRatings
        });
      });
    });

To rozwiązanie przekierowuje zadania z klienta na funkcję hostowaną, co oznacza, że aplikacja mobilna może dodawać oceny bez oczekiwania na zakończenie transakcji. Kod wykonywany w Cloud Functions nie jest objęty regułami bezpieczeństwa, co oznacza, że nie musisz już przyznawać klientom dostępu do zapisu danych zbiorczych.

Ograniczenia

Korzystanie z Cloud Functions do agregacji pozwala uniknąć niektórych problemów związanych z transakcjami po stronie klienta, ale wiąże się z innymi ograniczeniami:

  • Koszt – każda dodana ocena spowoduje wywołanie funkcji w Cloud Functions, co może zwiększyć koszty. Więcej informacji znajdziesz na stronie z cenami Cloud Functions.
  • Opóźnienie – przeniesienie pracy związanej z zbiorczością do funkcji w Cloud Functions powoduje, że aplikacja nie będzie widzieć zaktualizowanych danych, dopóki funkcja w Cloud Functions nie zakończy wykonywania i klient nie zostanie powiadomiony o nowych danych. W zależności od szybkości funkcji w Cloud Functions może to zająć więcej czasu niż wykonanie transakcji lokalnie.
  • Szybkość zapisu – to rozwiązanie może nie działać w przypadku często aktualizowanych agregacji, ponieważ dokumenty Cloud Firestore można aktualizować tylko raz na sekundę. Jeśli transakcja odczytuje dokument, który został zmodyfikowany poza transakcją, ponownie próbuje wykonać operację ograniczoną liczbę razy, a potem kończy się niepowodzeniem. Aby znaleźć odpowiednie obejście dla agregacji, która wymaga częstszych aktualizacji, zapoznaj się z artykułem o rozproszonych licznikach.