使用 AutoML 训练的模型给图片加标签 (iOS)

在您使用 AutoML Vision Edge 训练自己的模型后,就可以在应用中用它给图片加标签。

准备工作

  1. 如果您尚未将 Firebase 添加到自己的应用中,请按照入门指南中的步骤执行此操作。
  2. 在 Podfile 中添加机器学习套件库:
    pod 'Firebase/MLVision', '6.25.0'
    pod 'Firebase/MLVisionAutoML', '6.25.0'
    
    安装或更新项目的 Pod 之后,请务必使用 Xcode 项目的 .xcworkspace 来打开项目。
  3. 在您的应用中导入 Firebase:

    Swift

    import Firebase

    Objective-C

    @import Firebase;

1. 加载模型

机器学习套件会在设备上运行 AutoML 生成的模型。不过,您也可以将机器学习套件配置为从 Firebase 远程加载模型和/或从本地存储空间加载模型。

通过在 Firebase 上托管模型,您可以在不发布新应用版本的情况下更新模型,并且可以使用 Remote ConfigA/B Testing 为不同的用户组动态运用不同的模型。

如果您选择仅通过在 Firebase 中托管而不是与应用捆绑的方式来提供模型,可以缩小应用的初始下载文件大小。但请注意,如果模型未与您的应用捆绑,那么在应用首次下载模型之前,任何与模型相关的功能都将无法使用。

通过将您的模型与应用捆绑,您可以确保即使 Firebase 托管的模型不可用,应用的机器学习功能仍可正常运行。

配置 Firebase 托管的模型来源

如需使用远程托管的模型,请创建一个 AutoMLRemoteModel 对象,指定您在发布该模型时分配给模型的名称:

Swift

let remoteModel = AutoMLRemoteModel(
    name: "your_remote_model"  // The name you assigned in the Firebase console.
)

Objective-C

FIRAutoMLRemoteModel *remoteModel = [[FIRAutoMLRemoteModel alloc]
    initWithName:@"your_remote_model"];  // The name you assigned in the Firebase console.

然后,启动模型下载任务,指定要满足的下载条件。如果模型不在设备上,或模型有较新的版本,则任务将从 Firebase 异步下载模型:

Swift

let downloadConditions = ModelDownloadConditions(
  allowsCellularAccess: true,
  allowsBackgroundDownloading: true
)

let downloadProgress = ModelManager.modelManager().download(
  remoteModel,
  conditions: downloadConditions
)

Objective-C

FIRModelDownloadConditions *downloadConditions =
    [[FIRModelDownloadConditions alloc] initWithAllowsCellularAccess:YES
                                         allowsBackgroundDownloading:YES];

NSProgress *downloadProgress =
    [[FIRModelManager modelManager] downloadRemoteModel:remoteModel
                                             conditions:downloadConditions];

许多应用会通过其初始化代码启动下载任务,但您可以在需要使用该模型之前随时启动下载任务。

配置本地模型来源

如需将模型捆绑到您的应用,请执行以下操作:

  1. 将模型及其元数据自您从 Firebase 控制台下载的 zip 归档文件解压缩到一个文件夹:
    your_model_directory
      |____dict.txt
      |____manifest.json
      |____model.tflite
    
    所有这三个文件必须位于同一文件夹中。我们建议您依所下载文件原样使用这些文件,不要做出修改(包括文件名)。
  2. 将文件夹复制到 Xcode 项目,并在执行此操作时注意选择 Create folder references。模型文件和元数据将包含在应用软件包中,并提供给机器学习套件使用。
  3. 创建一个 AutoMLLocalModel 对象,指定模型清单文件的路径:

    Swift

    guard let manifestPath = Bundle.main.path(
        forResource: "manifest",
        ofType: "json",
        inDirectory: "your_model_directory"
    ) else { return true }
    let localModel = AutoMLLocalModel(manifestPath: manifestPath)
    

    Objective-C

    NSString *manifestPath = [NSBundle.mainBundle pathForResource:@"manifest"
                                                           ofType:@"json"
                                                      inDirectory:@"your_model_directory"];
    FIRAutoMLLocalModel *localModel = [[FIRAutoMLLocalModel alloc] initWithManifestPath:manifestPath];
    

根据模型创建图片标记器

配置模型来源后,根据其中一个模型创建 VisionImageLabeler 对象。

如果您只有本地捆绑的模型,只需根据您的 AutoMLLocalModel 对象创建一个标记器,然后配置您需要的置信度得分阈值(请参见评估您的模型):

Swift

let options = VisionOnDeviceAutoMLImageLabelerOptions(localModel: localModel)
options.confidenceThreshold = 0  // Evaluate your model in the Firebase console
                                 // to determine an appropriate value.
let labeler = Vision.vision().onDeviceAutoMLImageLabeler(options: options)

Objective-C

FIRVisionOnDeviceAutoMLImageLabelerOptions *options =
    [[FIRVisionOnDeviceAutoMLImageLabelerOptions alloc] initWithLocalModel:localModel];
options.confidenceThreshold = 0;  // Evaluate your model in the Firebase console
                                  // to determine an appropriate value.
FIRVisionImageLabeler *labeler =
    [[FIRVision vision] onDeviceAutoMLImageLabelerWithOptions:options];

如果您使用的是远程托管的模型,则必须在运行之前检查该模型是否已下载。您可以使用模型管理器的 isModelDownloaded(remoteModel:) 方法检查模型下载任务的状态。

虽然您只需在运行标记器之前确认这一点,但如果您同时拥有远程托管模型和本地捆绑模型,则可能需要在实例化 VisionImageLabeler 时执行此项检查:如果已下载远程模型,则根据该模型创建标记器,否则根据本地模型进行创建。

Swift

var options: VisionOnDeviceAutoMLImageLabelerOptions?
if (ModelManager.modelManager().isModelDownloaded(remoteModel)) {
  options = VisionOnDeviceAutoMLImageLabelerOptions(remoteModel: remoteModel)
} else {
  options = VisionOnDeviceAutoMLImageLabelerOptions(localModel: localModel)
}
options.confidenceThreshold = 0  // Evaluate your model in the Firebase console
                                 // to determine an appropriate value.
let labeler = Vision.vision().onDeviceAutoMLImageLabeler(options: options)

Objective-C

VisionOnDeviceAutoMLImageLabelerOptions *options;
if ([[FIRModelManager modelManager] isModelDownloaded:remoteModel]) {
  options = [[FIRVisionOnDeviceAutoMLImageLabelerOptions alloc] initWithRemoteModel:remoteModel];
} else {
  options = [[FIRVisionOnDeviceAutoMLImageLabelerOptions alloc] initWithLocalModel:localModel];
}
options.confidenceThreshold = 0.0f;  // Evaluate your model in the Firebase console
                                     // to determine an appropriate value.
FIRVisionImageLabeler *labeler = [[FIRVision vision] onDeviceAutoMLImageLabelerWithOptions:options];

如果您只有远程托管的模型,则应停用与模型相关的功能(例如灰显或隐藏部分界面),直到您确认模型已下载。

您可以将观察者附加到默认通知中心,以获取模型下载状态。请务必在观察者块中使用对 self 的弱引用,因为下载可能需要一些时间,并且源对象可能到下载完成才会被释放。例如:

Swift

NotificationCenter.default.addObserver(
    forName: .firebaseMLModelDownloadDidSucceed,
    object: nil,
    queue: nil
) { [weak self] notification in
    guard let strongSelf = self,
        let userInfo = notification.userInfo,
        let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue]
            as? RemoteModel,
        model.name == "your_remote_model"
        else { return }
    // The model was downloaded and is available on the device
}

NotificationCenter.default.addObserver(
    forName: .firebaseMLModelDownloadDidFail,
    object: nil,
    queue: nil
) { [weak self] notification in
    guard let strongSelf = self,
        let userInfo = notification.userInfo,
        let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue]
            as? RemoteModel
        else { return }
    let error = userInfo[ModelDownloadUserInfoKey.error.rawValue]
    // ...
}

Objective-C

__weak typeof(self) weakSelf = self;

[NSNotificationCenter.defaultCenter
    addObserverForName:FIRModelDownloadDidSucceedNotification
                object:nil
                 queue:nil
            usingBlock:^(NSNotification *_Nonnull note) {
              if (weakSelf == nil | note.userInfo == nil) {
                return;
              }
              __strong typeof(self) strongSelf = weakSelf;

              FIRRemoteModel *model = note.userInfo[FIRModelDownloadUserInfoKeyRemoteModel];
              if ([model.name isEqualToString:@"your_remote_model"]) {
                // The model was downloaded and is available on the device
              }
            }];

[NSNotificationCenter.defaultCenter
    addObserverForName:FIRModelDownloadDidFailNotification
                object:nil
                 queue:nil
            usingBlock:^(NSNotification *_Nonnull note) {
              if (weakSelf == nil | note.userInfo == nil) {
                return;
              }
              __strong typeof(self) strongSelf = weakSelf;

              NSError *error = note.userInfo[FIRModelDownloadUserInfoKeyError];
            }];

2. 准备输入图片

接下来,对于每个您想要加标签的图片,使用本部分介绍的某个选项创建 VisionImage 对象,并将其传递给 VisionImageLabeler 的一个实例(下一部分将具体介绍)。

使用 UIImageCMSampleBufferRef 创建一个 VisionImage 对象。

如需使用 UIImage,请按以下步骤操作:

  1. 在必要时旋转图片,以使其 imageOrientation 属性为 .up
  2. 使用方向正确的 UIImage 创建一个 VisionImage 对象。不要指定任何旋转方式元数据,必须使用默认值 .topLeft

    Swift

    let image = VisionImage(image: uiImage)

    Objective-C

    FIRVisionImage *image = [[FIRVisionImage alloc] initWithImage:uiImage];

如需使用 CMSampleBufferRef,请按以下步骤操作:

  1. 创建一个 VisionImageMetadata 对象,用其指定 CMSampleBufferRef 缓冲区中所含图片数据的方向。

    如需获取图片方向,请运行以下代码:

    Swift

    func imageOrientation(
        deviceOrientation: UIDeviceOrientation,
        cameraPosition: AVCaptureDevice.Position
        ) -> VisionDetectorImageOrientation {
        switch deviceOrientation {
        case .portrait:
            return cameraPosition == .front ? .leftTop : .rightTop
        case .landscapeLeft:
            return cameraPosition == .front ? .bottomLeft : .topLeft
        case .portraitUpsideDown:
            return cameraPosition == .front ? .rightBottom : .leftBottom
        case .landscapeRight:
            return cameraPosition == .front ? .topRight : .bottomRight
        case .faceDown, .faceUp, .unknown:
            return .leftTop
        }
    }

    Objective-C

    - (FIRVisionDetectorImageOrientation)
        imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation
                               cameraPosition:(AVCaptureDevicePosition)cameraPosition {
      switch (deviceOrientation) {
        case UIDeviceOrientationPortrait:
          if (cameraPosition == AVCaptureDevicePositionFront) {
            return FIRVisionDetectorImageOrientationLeftTop;
          } else {
            return FIRVisionDetectorImageOrientationRightTop;
          }
        case UIDeviceOrientationLandscapeLeft:
          if (cameraPosition == AVCaptureDevicePositionFront) {
            return FIRVisionDetectorImageOrientationBottomLeft;
          } else {
            return FIRVisionDetectorImageOrientationTopLeft;
          }
        case UIDeviceOrientationPortraitUpsideDown:
          if (cameraPosition == AVCaptureDevicePositionFront) {
            return FIRVisionDetectorImageOrientationRightBottom;
          } else {
            return FIRVisionDetectorImageOrientationLeftBottom;
          }
        case UIDeviceOrientationLandscapeRight:
          if (cameraPosition == AVCaptureDevicePositionFront) {
            return FIRVisionDetectorImageOrientationTopRight;
          } else {
            return FIRVisionDetectorImageOrientationBottomRight;
          }
        default:
          return FIRVisionDetectorImageOrientationTopLeft;
      }
    }

    然后,创建元数据对象:

    Swift

    let cameraPosition = AVCaptureDevice.Position.back  // Set to the capture device you used.
    let metadata = VisionImageMetadata()
    metadata.orientation = imageOrientation(
        deviceOrientation: UIDevice.current.orientation,
        cameraPosition: cameraPosition
    )

    Objective-C

    FIRVisionImageMetadata *metadata = [[FIRVisionImageMetadata alloc] init];
    AVCaptureDevicePosition cameraPosition =
        AVCaptureDevicePositionBack;  // Set to the capture device you used.
    metadata.orientation =
        [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation
                                     cameraPosition:cameraPosition];
  2. 使用 CMSampleBufferRef 对象和旋转方式元数据创建一个 VisionImage 对象:

    Swift

    let image = VisionImage(buffer: sampleBuffer)
    image.metadata = metadata

    Objective-C

    FIRVisionImage *image = [[FIRVisionImage alloc] initWithBuffer:sampleBuffer];
    image.metadata = metadata;

3. 运行图片标记器

如需给图片中的对象加标签,请将 VisionImage 对象传递给 VisionImageLabelerprocess() 方法。

Swift

labeler.process(image) { labels, error in
    guard error == nil, let labels = labels else { return }

    // Task succeeded.
    // ...
}

Objective-C

[labeler
    processImage:image
      completion:^(NSArray<FIRVisionImageLabel *> *_Nullable labels, NSError *_Nullable error) {
        if (error != nil || labels == nil) {
          return;
        }

        // Task succeeded.
        // ...
      }];

如果为图片加标签成功,则系统会向完成处理程序传递一组 VisionImageLabel 对象。在每个对象中,您可以获取图片中已识别特征的相关信息。

例如:

Swift

for label in labels {
    let labelText = label.text
    let confidence = label.confidence
}

Objective-C

for (FIRVisionImageLabel *label in labels) {
  NSString *labelText = label.text;
  NSNumber *confidence = label.confidence;
}

提高实时性能的相关提示

  • 限制检测器的调用次数。如果在检测器运行时有新的视频帧可用,请丢弃该帧。
  • 如果要将检测器的输出作为图形叠加在输入图片上,请先从机器学习套件获取结果,然后在一个步骤中完成图片的呈现和叠加。采用这一方法,每个输入帧只需在显示表面呈现一次。如需查看示例,请参阅示例应用中的 previewOverlayViewFIRDetectionOverlayView 类。