Google cam kết thúc đẩy công bằng chủng tộc cho Cộng đồng người da đen. Xem cách thực hiện.

Nhận ra các mốc với Firebase ML trên Android

Bạn có thể sử dụng Firebase ML để nhận ra các địa danh nổi tiếng trong hình ảnh.

Trước khi bắt đầu

  1. Nếu bạn chưa có, hãy thêm Firebase vào dự án Android của bạn .
  2. Sử dụng Firebase Android BoM , khai báo sự phụ thuộc cho thư viện Firebase ML Vision Android trong tệp Gradle mô-đun (cấp ứng dụng) của bạn (thường là app/build.gradle ).
    dependencies {
        // Import the BoM for the Firebase platform
        implementation platform('com.google.firebase:firebase-bom:30.3.1')
    
        // Declare the dependency for the Firebase ML Vision library
        // When using the BoM, you don't specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision'
    }
    

    Bằng cách sử dụng Firebase Android BoM , ứng dụng của bạn sẽ luôn sử dụng các phiên bản tương thích của thư viện Firebase Android.

    (Thay thế) Khai báo các phụ thuộc thư viện Firebase mà không cần sử dụng BoM

    Nếu bạn chọn không sử dụng Firebase BoM, bạn phải chỉ định từng phiên bản thư viện Firebase trong dòng phụ thuộc của nó.

    Lưu ý rằng nếu bạn sử dụng nhiều thư viện Firebase trong ứng dụng của mình, chúng tôi thực sự khuyên bạn nên sử dụng BoM để quản lý các phiên bản thư viện, điều này đảm bảo rằng tất cả các phiên bản đều tương thích.

    dependencies {
        // Declare the dependency for the Firebase ML Vision library
        // When NOT using the BoM, you must specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision:24.1.0'
    }
    
  3. Nếu bạn chưa bật API dựa trên đám mây cho dự án của mình, hãy làm như vậy ngay bây giờ:

    1. Mở trang API Firebase ML của bảng điều khiển Firebase.
    2. Nếu bạn chưa nâng cấp dự án của mình lên gói định giá Blaze, hãy nhấp vào Nâng cấp để thực hiện. (Bạn sẽ chỉ được nhắc nâng cấp nếu dự án của bạn không nằm trong gói Blaze.)

      Chỉ các dự án cấp Blaze mới có thể sử dụng API dựa trên đám mây.

    3. Nếu API dựa trên đám mây chưa được bật, hãy nhấp vào Bật API dựa trên đám mây .

Định cấu hình máy dò mốc

Theo mặc định, công cụ dò tìm Đám mây sử dụng phiên bản STABLE của mô hình và trả về tối đa 10 kết quả. Nếu bạn muốn thay đổi một trong hai cài đặt này, hãy chỉ định chúng bằng đối tượng FirebaseVisionCloudDetectorOptions .

Ví dụ: để thay đổi cả hai cài đặt mặc định, hãy xây dựng một đối tượng FirebaseVisionCloudDetectorOptions như trong ví dụ sau:

Java

FirebaseVisionCloudDetectorOptions options =
        new FirebaseVisionCloudDetectorOptions.Builder()
                .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL)
                .setMaxResults(15)
                .build();

Kotlin+KTX

val options = FirebaseVisionCloudDetectorOptions.Builder()
        .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL)
        .setMaxResults(15)
        .build()

Để sử dụng cài đặt mặc định, bạn có thể sử dụng FirebaseVisionCloudDetectorOptions.DEFAULT trong bước tiếp theo.

Chạy máy dò mốc

Để nhận dạng các điểm mốc trong hình ảnh, hãy tạo đối tượng FirebaseVisionImage từ Bitmap , media.Image , ByteBuffer , mảng byte hoặc tệp trên thiết bị. Sau đó, chuyển đối tượng FirebaseVisionImage vào phương thức detectInImage FirebaseVisionCloudLandmarkDetector

  1. Tạo một đối tượng FirebaseVisionImage từ hình ảnh của bạn.

    • Để tạo đối tượng FirebaseVisionImage từ đối tượng media.Image , chẳng hạn như khi chụp ảnh từ máy ảnh của thiết bị, hãy chuyển đối tượng media.Image và vòng quay của ảnh tới FirebaseVisionImage.fromMediaImage() .

      Nếu bạn sử dụng thư viện CameraX , các lớp OnImageCapturedListenerImageAnalysis.Analyzer tính toán giá trị xoay vòng cho bạn, vì vậy bạn chỉ cần chuyển đổi xoay vòng thành một trong các hằng số ROTATION_ của ROTATION_ ML trước khi gọi FirebaseVisionImage.fromMediaImage() :

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Vision API
              // ...
          }
      }
      

      Kotlin+KTX

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Vision API
                  // ...
              }
          }
      }
      

      Nếu bạn không sử dụng thư viện máy ảnh cung cấp cho bạn vòng quay của hình ảnh, bạn có thể tính toán nó từ vòng quay của thiết bị và hướng của cảm biến máy ảnh trong thiết bị:

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Kotlin+KTX

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      Sau đó, chuyển đối tượng media.Image và giá trị xoay vòng vào FirebaseVisionImage.fromMediaImage() :

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
    • Để tạo đối tượng FirebaseVisionImage từ URI tệp, hãy chuyển ngữ cảnh ứng dụng và URI tệp vào FirebaseVisionImage.fromFilePath() . Điều này hữu ích khi bạn sử dụng ý định ACTION_GET_CONTENT để nhắc người dùng chọn hình ảnh từ ứng dụng thư viện của họ.

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }

      Kotlin+KTX

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }
    • Để tạo một đối tượng FirebaseVisionImage từ một ByteBuffer hoặc một mảng byte, trước tiên hãy tính toán xoay vòng hình ảnh như được mô tả ở trên cho đầu vào media.Image .

      Sau đó, tạo một đối tượng FirebaseVisionImageMetadata có chứa chiều cao, chiều rộng, định dạng mã hóa màu và xoay của hình ảnh:

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Kotlin+KTX

      val metadata = FirebaseVisionImageMetadata.Builder()
              .setWidth(480) // 480x360 is typically sufficient for
              .setHeight(360) // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build()

      Sử dụng bộ đệm hoặc mảng và đối tượng siêu dữ liệu, để tạo đối tượng FirebaseVisionImage :

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
    • Để tạo đối tượng FirebaseVisionImage từ đối tượng Bitmap :

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromBitmap(bitmap)
      Hình ảnh được đại diện bởi đối tượng Bitmap phải thẳng đứng, không cần xoay thêm.

  2. Nhận một phiên bản của FirebaseVisionCloudLandmarkDetector :

    Java

    FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance()
            .getVisionCloudLandmarkDetector();
    // Or, to change the default settings:
    // FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance()
    //         .getVisionCloudLandmarkDetector(options);

    Kotlin+KTX

    val detector = FirebaseVision.getInstance()
            .visionCloudLandmarkDetector
    // Or, to change the default settings:
    // val detector = FirebaseVision.getInstance()
    //         .getVisionCloudLandmarkDetector(options)
  3. Cuối cùng, chuyển hình ảnh đến phương thức detectInImage :

    Java

    Task<List<FirebaseVisionCloudLandmark>> result = detector.detectInImage(image)
            .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionCloudLandmark>>() {
                @Override
                public void onSuccess(List<FirebaseVisionCloudLandmark> firebaseVisionCloudLandmarks) {
                    // Task completed successfully
                    // ...
                }
            })
            .addOnFailureListener(new OnFailureListener() {
                @Override
                public void onFailure(@NonNull Exception e) {
                    // Task failed with an exception
                    // ...
                }
            });

    Kotlin+KTX

    val result = detector.detectInImage(image)
            .addOnSuccessListener { firebaseVisionCloudLandmarks ->
                // Task completed successfully
                // ...
            }
            .addOnFailureListener { e ->
                // Task failed with an exception
                // ...
            }

Nhận thông tin về các địa danh được công nhận

Nếu hoạt động nhận dạng mốc thành công, danh sách các đối tượng FirebaseVisionCloudLandmark sẽ được chuyển đến trình nghe thành công. Mỗi đối tượng FirebaseVisionCloudLandmark đại diện cho một mốc đã được nhận dạng trong hình ảnh. Đối với mỗi mốc, bạn có thể lấy tọa độ giới hạn của nó trong hình ảnh đầu vào, tên của mốc, vĩ độ và kinh độ, ID thực thể Sơ đồ tri thức (nếu có) và điểm tin cậy của đối sánh. Ví dụ:

Java

for (FirebaseVisionCloudLandmark landmark: firebaseVisionCloudLandmarks) {

    Rect bounds = landmark.getBoundingBox();
    String landmarkName = landmark.getLandmark();
    String entityId = landmark.getEntityId();
    float confidence = landmark.getConfidence();

    // Multiple locations are possible, e.g., the location of the depicted
    // landmark and the location the picture was taken.
    for (FirebaseVisionLatLng loc: landmark.getLocations()) {
        double latitude = loc.getLatitude();
        double longitude = loc.getLongitude();
    }
}

Kotlin+KTX

for (landmark in firebaseVisionCloudLandmarks) {

    val bounds = landmark.boundingBox
    val landmarkName = landmark.landmark
    val entityId = landmark.entityId
    val confidence = landmark.confidence

    // Multiple locations are possible, e.g., the location of the depicted
    // landmark and the location the picture was taken.
    for (loc in landmark.locations) {
        val latitude = loc.latitude
        val longitude = loc.longitude
    }
}

Bước tiếp theo