AutoML でトレーニングされたモデルを使用して画像にラベルを付ける(Android)

AutoML Vision Edge を使用して独自のモデルをトレーニングしたら、そのモデルをアプリで使用して画像にラベルを付けることができます。

始める前に

  1. まだ Firebase を Android プロジェクトに追加していない場合は追加します。
  2. ML Kit Android ライブラリの依存関係をモジュール(アプリレベル)の Gradle ファイル(通常は app/build.gradle)に追加します:
    apply plugin: 'com.android.application'
    apply plugin: 'com.google.gms.google-services'
    
    dependencies {
      // ...
    
      implementation 'com.google.firebase:firebase-ml-vision:24.0.3'
      implementation 'com.google.firebase:firebase-ml-vision-automl:18.0.5'
    }
    

1. モデルを読み込む

ML Kit は、デバイス上で AutoML によって生成されたモデルを実行します。ただし、リモートで Firebase から読み込むか、ローカル ストレージから読み込むか、またはその両方でモデルを読み込むように ML Kit を構成できます。

Firebase でモデルをホストすることで、新しいアプリ バージョンをリリースすることなくモデルを更新できます。また、Remote Config と A/B Testing を使用して、さまざまなモデルをさまざまなユーザーセットに動的に提供できます。

モデルをアプリにバンドルしないで、Firebase でホストすることによってのみモデルを提供することで、アプリの初期ダウンロード サイズを小さくできます。ただし、モデルがアプリにバンドルされていない場合、モデルに関連する機能は、アプリでモデルを初めてダウンロードするまで使用できません。

モデルをアプリにバンドルすると、Firebase でホストされているモデルを取得できないときにもアプリの ML 機能を引き続き使用できます。

Firebase によってホストされるモデルソースを構成する

リモートでホストされるモデルを使用するには、FirebaseAutoMLRemoteModel オブジェクトを作成します。その際に、モデルを公開したときに割り当てた名前を指定します。

Java

// Specify the name you assigned in the Firebase console.
FirebaseAutoMLRemoteModel remoteModel =
    new FirebaseAutoMLRemoteModel.Builder("your_remote_model").build();

Kotlin+KTX

// Specify the name you assigned in the Firebase console.
val remoteModel = FirebaseAutoMLRemoteModel.Builder("your_remote_model").build()

次に、ダウンロードを許可する条件を指定してモデルのダウンロード タスクを開始します。モデルがデバイスにない場合、または新しいバージョンのモデルが使用可能な場合、このタスクは Firebase から非同期でモデルをダウンロードします。

Java

FirebaseModelDownloadConditions conditions = new FirebaseModelDownloadConditions.Builder()
        .requireWifi()
        .build();
FirebaseModelManager.getInstance().download(remoteModel, conditions)
        .addOnCompleteListener(new OnCompleteListener<Void>() {
            @Override
            public void onComplete(@NonNull Task<Void> task) {
                // Success.
            }
        });

Kotlin+KTX

val conditions = FirebaseModelDownloadConditions.Builder()
    .requireWifi()
    .build()
FirebaseModelManager.getInstance().download(remoteModel, conditions)
    .addOnCompleteListener {
        // Success.
    }

多くのアプリは、初期化コードでモデルのダウンロード タスクを開始しますが、モデルを使用する前に開始することもできます。

ローカル モデルソースを構成する

モデルをアプリにバンドルするには:

  1. Firebase コンソールからダウンロードした zip アーカイブ内のモデルとそのメタデータをフォルダに抽出します。ダウンロードしたファイルは修正せずに(ファイル名も)そのまま使用することをおすすめします。
  2. モデルとそのメタデータ ファイルをアプリ パッケージに含めます。

    1. プロジェクトにアセット フォルダがない場合は、app/ フォルダを右クリックし、次に [新規] > [フォルダ] > [Assets フォルダ] の順にクリックして作成します。
    2. モデルファイルを格納するために、Assets フォルダの下にサブフォルダを作成します。
    3. ファイル model.tflitedict.txtmanifest.json をサブフォルダにコピーします(3 つのファイルはすべて同じフォルダに配置する必要があります)。
  3. アプリのビルド時に Gradle がモデルファイルを圧縮しないように、アプリの build.gradle ファイルに以下を追加します:
    android {
        // ...
        aaptOptions {
            noCompress "tflite"
        }
    }
    
    モデルファイルはアプリ パッケージに含まれ、これは ML Kit が未加工のアセットとして使用できます。
  4. モデル マニフェスト ファイルへのパスを指定して FirebaseAutoMLLocalModel オブジェクトを作成します。

    Java

    FirebaseAutoMLLocalModel localModel = new FirebaseAutoMLLocalModel.Builder()
            .setAssetFilePath("manifest.json")
            .build();
    

    Kotlin+KTX

    val localModel = FirebaseAutoMLLocalModel.Builder()
            .setAssetFilePath("manifest.json")
            .build()
    

モデルから画像ラベラーを作成する

モデルソースを構成したら、そのソースのいずれか 1 つから FirebaseVisionImageLabeler オブジェクトを作成します。

ローカル バンドルモデルのみがある場合は FirebaseAutoMLLocalModel オブジェクトからラベラーを作成し、必要な信頼スコアのしきい値を構成するだけで済みます(モデルを評価するを参照)。

Java

FirebaseVisionImageLabeler labeler;
try {
    FirebaseVisionOnDeviceAutoMLImageLabelerOptions options =
            new FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel)
                    .setConfidenceThreshold(0.0f)  // Evaluate your model in the Firebase console
                                                   // to determine an appropriate value.
                    .build();
    labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options);
} catch (FirebaseMLException e) {
    // ...
}

Kotlin+KTX

val options = FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel)
    .setConfidenceThreshold(0)  // Evaluate your model in the Firebase console
                                // to determine an appropriate value.
    .build()
val labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options)

リモートでホストされるモデルがある場合は、そのモデルを実行する前にダウンロード済みであることを確認する必要があります。モデルのダウンロード タスクのステータスは、モデル マネージャーの isModelDownloaded() メソッドを使用して確認できます。

ダウンロードのステータスはラベラーを実行する前に確認するだけで済みますが、リモートでホストされるモデルとローカル バンドルモデルの両方がある場合は、画像ラベラーをインスタンス化する、つまりラベラーを作成する(リモートモデルをダウンロード済みの場合はリモートモデルから、ダウンロードされていない場合はローカルモデルから作成する)ときに確認すると良いかもしれません。

Java

FirebaseModelManager.getInstance().isModelDownloaded(remoteModel)
        .addOnSuccessListener(new OnSuccessListener<Boolean>() {
            @Override
            public void onSuccess(Boolean isDownloaded) {
                FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder optionsBuilder;
                if (isDownloaded) {
                    optionsBuilder = new FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(remoteModel);
                } else {
                    optionsBuilder = new FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel);
                }
                FirebaseVisionOnDeviceAutoMLImageLabelerOptions options = optionsBuilder
                        .setConfidenceThreshold(0.0f)  // Evaluate your model in the Firebase console
                                                       // to determine an appropriate threshold.
                        .build();

                FirebaseVisionImageLabeler labeler;
                try {
                    labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options);
                } catch (FirebaseMLException e) {
                    // Error.
                }
            }
        });

Kotlin+KTX

FirebaseModelManager.getInstance().isModelDownloaded(remoteModel)
    .addOnSuccessListener { isDownloaded -> 
    val optionsBuilder =
        if (isDownloaded) {
            FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(remoteModel)
        } else {
            FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel)
        }
    // Evaluate your model in the Firebase console to determine an appropriate threshold.
    val options = optionsBuilder.setConfidenceThreshold(0.0f).build()
    val labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options)
}

リモートでホストされるモデルのみがある場合は、モデルがダウンロード済みであることを確認するまで、モデルに関連する機能を無効にする必要があります(UI の一部をグレー表示または非表示にするなど)。確認はモデル マネージャーの download() メソッドにリスナーを接続して行います。

Java

FirebaseModelManager.getInstance().download(remoteModel, conditions)
        .addOnSuccessListener(new OnSuccessListener<Void>() {
            @Override
            public void onSuccess(Void v) {
              // Download complete. Depending on your app, you could enable
              // the ML feature, or switch from the local model to the remote
              // model, etc.
            }
        });

Kotlin+KTX

FirebaseModelManager.getInstance().download(remoteModel, conditions)
    .addOnCompleteListener {
        // Download complete. Depending on your app, you could enable the ML
        // feature, or switch from the local model to the remote model, etc.
    }

2. 入力画像を準備する

次に、ラベルを付ける画像ごとに、このセクションで説明されているオプションのいずれかを使用して FirebaseVisionImage オブジェクトを作成し、それを FirebaseVisionImageLabeler のインスタンスに渡します(次のセクションで説明)。

FirebaseVisionImage オブジェクトは、media.Image オブジェクト、デバイス上のファイル、バイト配列、Bitmap オブジェクトのいずれかから作成できます。

  • FirebaseVisionImage オブジェクトを media.Image オブジェクトから作成するには(デバイスのカメラから画像をキャプチャする場合など)、media.Image オブジェクトと画像の回転を FirebaseVisionImage.fromMediaImage() に渡します。

    CameraX ライブラリを使用する場合は、OnImageCapturedListener クラスと ImageAnalysis.Analyzer クラスによって回転値が計算されるので、FirebaseVisionImage.fromMediaImage() を呼び出す前に、その回転を ML Kit の ROTATION_ 定数のいずれかに変換するだけで済みます。

    Java

    private class YourAnalyzer implements ImageAnalysis.Analyzer {
    
        private int degreesToFirebaseRotation(int degrees) {
            switch (degrees) {
                case 0:
                    return FirebaseVisionImageMetadata.ROTATION_0;
                case 90:
                    return FirebaseVisionImageMetadata.ROTATION_90;
                case 180:
                    return FirebaseVisionImageMetadata.ROTATION_180;
                case 270:
                    return FirebaseVisionImageMetadata.ROTATION_270;
                default:
                    throw new IllegalArgumentException(
                            "Rotation must be 0, 90, 180, or 270.");
            }
        }
    
        @Override
        public void analyze(ImageProxy imageProxy, int degrees) {
            if (imageProxy == null || imageProxy.getImage() == null) {
                return;
            }
            Image mediaImage = imageProxy.getImage();
            int rotation = degreesToFirebaseRotation(degrees);
            FirebaseVisionImage image =
                    FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
    

    Kotlin+KTX

    private class YourImageAnalyzer : ImageAnalysis.Analyzer {
        private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
            0 -> FirebaseVisionImageMetadata.ROTATION_0
            90 -> FirebaseVisionImageMetadata.ROTATION_90
            180 -> FirebaseVisionImageMetadata.ROTATION_180
            270 -> FirebaseVisionImageMetadata.ROTATION_270
            else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
        }
    
        override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
            val mediaImage = imageProxy?.image
            val imageRotation = degreesToFirebaseRotation(degrees)
            if (mediaImage != null) {
                val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                // Pass image to an ML Kit Vision API
                // ...
            }
        }
    }
    

    画像の回転を取得するカメラ ライブラリを使用しない場合は、デバイスの回転とデバイス内のカメラセンサーの向きから計算できます。

    Java

    private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
    static {
        ORIENTATIONS.append(Surface.ROTATION_0, 90);
        ORIENTATIONS.append(Surface.ROTATION_90, 0);
        ORIENTATIONS.append(Surface.ROTATION_180, 270);
        ORIENTATIONS.append(Surface.ROTATION_270, 180);
    }
    
    /**
     * Get the angle by which an image must be rotated given the device's current
     * orientation.
     */
    @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
    private int getRotationCompensation(String cameraId, Activity activity, Context context)
            throws CameraAccessException {
        // Get the device's current rotation relative to its "native" orientation.
        // Then, from the ORIENTATIONS table, look up the angle the image must be
        // rotated to compensate for the device's rotation.
        int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
        int rotationCompensation = ORIENTATIONS.get(deviceRotation);
    
        // On most devices, the sensor orientation is 90 degrees, but for some
        // devices it is 270 degrees. For devices with a sensor orientation of
        // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
        CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
        int sensorOrientation = cameraManager
                .getCameraCharacteristics(cameraId)
                .get(CameraCharacteristics.SENSOR_ORIENTATION);
        rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
    
        // Return the corresponding FirebaseVisionImageMetadata rotation value.
        int result;
        switch (rotationCompensation) {
            case 0:
                result = FirebaseVisionImageMetadata.ROTATION_0;
                break;
            case 90:
                result = FirebaseVisionImageMetadata.ROTATION_90;
                break;
            case 180:
                result = FirebaseVisionImageMetadata.ROTATION_180;
                break;
            case 270:
                result = FirebaseVisionImageMetadata.ROTATION_270;
                break;
            default:
                result = FirebaseVisionImageMetadata.ROTATION_0;
                Log.e(TAG, "Bad rotation value: " + rotationCompensation);
        }
        return result;
    }

    Kotlin+KTX

    private val ORIENTATIONS = SparseIntArray()
    
    init {
        ORIENTATIONS.append(Surface.ROTATION_0, 90)
        ORIENTATIONS.append(Surface.ROTATION_90, 0)
        ORIENTATIONS.append(Surface.ROTATION_180, 270)
        ORIENTATIONS.append(Surface.ROTATION_270, 180)
    }
    /**
     * Get the angle by which an image must be rotated given the device's current
     * orientation.
     */
    @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
    @Throws(CameraAccessException::class)
    private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
        // Get the device's current rotation relative to its "native" orientation.
        // Then, from the ORIENTATIONS table, look up the angle the image must be
        // rotated to compensate for the device's rotation.
        val deviceRotation = activity.windowManager.defaultDisplay.rotation
        var rotationCompensation = ORIENTATIONS.get(deviceRotation)
    
        // On most devices, the sensor orientation is 90 degrees, but for some
        // devices it is 270 degrees. For devices with a sensor orientation of
        // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
        val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
        val sensorOrientation = cameraManager
                .getCameraCharacteristics(cameraId)
                .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
        rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
    
        // Return the corresponding FirebaseVisionImageMetadata rotation value.
        val result: Int
        when (rotationCompensation) {
            0 -> result = FirebaseVisionImageMetadata.ROTATION_0
            90 -> result = FirebaseVisionImageMetadata.ROTATION_90
            180 -> result = FirebaseVisionImageMetadata.ROTATION_180
            270 -> result = FirebaseVisionImageMetadata.ROTATION_270
            else -> {
                result = FirebaseVisionImageMetadata.ROTATION_0
                Log.e(TAG, "Bad rotation value: $rotationCompensation")
            }
        }
        return result
    }

    次に、media.Image オブジェクトと回転値を FirebaseVisionImage.fromMediaImage() に渡します。

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

    Kotlin+KTX

    val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
  • FirebaseVisionImage オブジェクトをファイルの URI から作成するには、アプリ コンテキストとファイルの URI を FirebaseVisionImage.fromFilePath() に渡します。これは、ACTION_GET_CONTENT インテントを使用して、ギャラリー アプリから画像を選択するようにユーザーに促すときに便利です。

    Java

    FirebaseVisionImage image;
    try {
        image = FirebaseVisionImage.fromFilePath(context, uri);
    } catch (IOException e) {
        e.printStackTrace();
    }

    Kotlin+KTX

    val image: FirebaseVisionImage
    try {
        image = FirebaseVisionImage.fromFilePath(context, uri)
    } catch (e: IOException) {
        e.printStackTrace()
    }
  • FirebaseVisionImage オブジェクトを ByteBuffer またはバイト配列から作成するには、media.Image 入力について上記のように、まず画像の回転を計算します。

    次に、画像の高さ、幅、カラー エンコード形式、回転を含む FirebaseVisionImageMetadata オブジェクトを作成します。

    Java

    FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
            .setWidth(480)   // 480x360 is typically sufficient for
            .setHeight(360)  // image recognition
            .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
            .setRotation(rotation)
            .build();

    Kotlin+KTX

    val metadata = FirebaseVisionImageMetadata.Builder()
            .setWidth(480) // 480x360 is typically sufficient for
            .setHeight(360) // image recognition
            .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
            .setRotation(rotation)
            .build()

    メタデータ オブジェクトと、バッファまたは配列を使用して、FirebaseVisionImage オブジェクトを作成します。

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
    // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

    Kotlin+KTX

    val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
    // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
  • FirebaseVisionImage オブジェクトを Bitmap オブジェクトから作成するコードは、以下のとおりです。

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

    Kotlin+KTX

    val image = FirebaseVisionImage.fromBitmap(bitmap)
    Bitmap オブジェクトによって表される画像は、これ以上回転させる必要がないように、正しい向きになっている必要があります。

3. 画像ラベラーを実行する

画像内のオブジェクトにラベルを付けるには、FirebaseVisionImage オブジェクトを FirebaseVisionImageLabelerprocessImage() メソッドに渡します。

Java

labeler.processImage(image)
        .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionImageLabel>>() {
            @Override
            public void onSuccess(List<FirebaseVisionImageLabel> labels) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

Kotlin+KTX

labeler.processImage(image)
        .addOnSuccessListener { labels ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

画像のラベル付けが成功すると、FirebaseVisionImageLabel オブジェクトの配列が成功リスナーに渡されます。各オブジェクトから、画像内で認識された特徴に関する情報を取得できます。

例:

Java

for (FirebaseVisionImageLabel label: labels) {
    String text = label.getText();
    float confidence = label.getConfidence();
}

Kotlin+KTX

for (label in labels) {
    val text = label.text
    val confidence = label.confidence
}

リアルタイムのパフォーマンスを改善するためのヒント

  • 検出器の呼び出しのスロットル調整を行います。検出器の実行中に新しい動画フレームが使用可能になった場合は、そのフレームをドロップします。
  • 検出器の出力を使用して入力画像の上にグラフィックスをオーバーレイする場合は、まず ML Kit から検出結果を取得し、画像とオーバーレイを 1 つのステップでレンダリングします。これにより、ディスプレイ サーフェスへのレンダリングは入力フレームごとに 1 回で済みます。
  • Camera2 API を使用する場合は、ImageFormat.YUV_420_888 形式で画像をキャプチャします。

    古い Camera API を使用する場合は、ImageFormat.NV21 形式で画像をキャプチャします。