Eski özel model API'sinden taşıma

firebase-ml-model-interpreter kitaplığının 22.0.2 sürümünde, özel modellerin cihazdaki konumunu alan yeni bir getLatestModelFile() yöntemi kullanıma sunulmuştur. Bu yöntemi, Interpreter sarıcısı yerine kullanabileceğiniz bir TensorFlow Lite FirebaseModelInterpreter nesnesini doğrudan oluşturmak için kullanabilirsiniz.

Bundan sonra tercih edilecek yaklaşım budur. TensorFlow Lite yorumlayıcı sürümü artık Firebase kitaplığı sürümüyle birlikte sunulmadığı için istediğiniz zaman TensorFlow Lite'ın yeni sürümlerine yükseltme yapma veya özel TensorFlow Lite derlemelerini daha kolay kullanma konusunda daha fazla esnekliğe sahip olursunuz.

Bu sayfada, FirebaseModelInterpreter kullanımından TensorFlow Lite Interpreter'ye nasıl geçiş yapabileceğiniz gösterilmektedir.

1. Proje bağımlılıklarını güncelleme

Projenizin bağımlılıklarını, firebase-ml-model-interpreter kitaplığının (veya daha yeni) 22.0.2 sürümünü ve tensorflow-lite kitaplığını içerecek şekilde güncelleyin:

Önce

implementation("com.google.firebase:firebase-ml-model-interpreter:22.0.1")

Sonra

implementation("com.google.firebase:firebase-ml-model-interpreter:22.0.2")
implementation("org.tensorflow:tensorflow-lite:2.0.0")

2. FirebaseModelInterpreter yerine TensorFlow Lite yorumlayıcısı oluşturun.

FirebaseModelInterpreter oluşturmak yerine, getLatestModelFile() ile modelin cihazdaki konumunu alın ve TensorFlow Lite Interpreter oluşturmak için kullanın.

Önce

Kotlin

val remoteModel = FirebaseCustomRemoteModel.Builder("your_model").build()
val options = FirebaseModelInterpreterOptions.Builder(remoteModel).build()
val interpreter = FirebaseModelInterpreter.getInstance(options)

Java

FirebaseCustomRemoteModel remoteModel =
        new FirebaseCustomRemoteModel.Builder("your_model").build();
FirebaseModelInterpreterOptions options =
        new FirebaseModelInterpreterOptions.Builder(remoteModel).build();
FirebaseModelInterpreter interpreter = FirebaseModelInterpreter.getInstance(options);

Sonra

Kotlin

val remoteModel = FirebaseCustomRemoteModel.Builder("your_model").build()
FirebaseModelManager.getInstance().getLatestModelFile(remoteModel)
    .addOnCompleteListener { task ->
        val modelFile = task.getResult()
        if (modelFile != null) {
            // Instantiate an org.tensorflow.lite.Interpreter object.
            interpreter = Interpreter(modelFile)
        }
    }

Java

FirebaseCustomRemoteModel remoteModel =
        new FirebaseCustomRemoteModel.Builder("your_model").build();
FirebaseModelManager.getInstance().getLatestModelFile(remoteModel)
        .addOnCompleteListener(new OnCompleteListener<File>() {
            @Override
            public void onComplete(@NonNull Task<File> task) {
                File modelFile = task.getResult();
                if (modelFile != null) {
                    // Instantiate an org.tensorflow.lite.Interpreter object.
                    Interpreter interpreter = new Interpreter(modelFile);
                }
            }
        });

3. Giriş ve çıkış hazırlama kodunu güncelleme

FirebaseModelInterpreter ile, yorumlayıcıyı çalıştırdığınızda FirebaseModelInputOutputOptions nesnesi ileterek modelin giriş ve çıkış şekillerini belirtirsiniz.

TensorFlow Lite yorumlayıcısı için bunun yerine modelinizin giriş ve çıkışı için doğru boyutta ByteBuffer nesneleri ayırırsınız.

Örneğin, modelinizin giriş şekli [1 224 224 3] float değerleri ve çıkış şekli [1 1000] float değerleri ise şu değişiklikleri yapın:

Önce

Kotlin

val inputOutputOptions = FirebaseModelInputOutputOptions.Builder()
    .setInputFormat(0, FirebaseModelDataType.FLOAT32, intArrayOf(1, 224, 224, 3))
    .setOutputFormat(0, FirebaseModelDataType.FLOAT32, intArrayOf(1, 1000))
    .build()

val input = ByteBuffer.allocateDirect(224*224*3*4).order(ByteOrder.nativeOrder())
// Then populate with input data.

val inputs = FirebaseModelInputs.Builder()
    .add(input)
    .build()

interpreter.run(inputs, inputOutputOptions)
    .addOnSuccessListener { outputs ->
        // ...
    }
    .addOnFailureListener {
        // Task failed with an exception.
        // ...
    }

Java

FirebaseModelInputOutputOptions inputOutputOptions =
        new FirebaseModelInputOutputOptions.Builder()
                .setInputFormat(0, FirebaseModelDataType.FLOAT32, new int[]{1, 224, 224, 3})
                .setOutputFormat(0, FirebaseModelDataType.FLOAT32, new int[]{1, 1000})
                .build();

float[][][][] input = new float[1][224][224][3];
// Then populate with input data.

FirebaseModelInputs inputs = new FirebaseModelInputs.Builder()
        .add(input)
        .build();

interpreter.run(inputs, inputOutputOptions)
        .addOnSuccessListener(
                new OnSuccessListener<FirebaseModelOutputs>() {
                    @Override
                    public void onSuccess(FirebaseModelOutputs result) {
                        // ...
                    }
                })
        .addOnFailureListener(
                new OnFailureListener() {
                    @Override
                    public void onFailure(@NonNull Exception e) {
                        // Task failed with an exception
                        // ...
                    }
                });

Sonra

Kotlin

val inBufferSize = 1 * 224 * 224 * 3 * java.lang.Float.SIZE / java.lang.Byte.SIZE
val inputBuffer = ByteBuffer.allocateDirect(inBufferSize).order(ByteOrder.nativeOrder())
// Then populate with input data.

val outBufferSize = 1 * 1000 * java.lang.Float.SIZE / java.lang.Byte.SIZE
val outputBuffer = ByteBuffer.allocateDirect(outBufferSize).order(ByteOrder.nativeOrder())

interpreter.run(inputBuffer, outputBuffer)

Java

int inBufferSize = 1 * 224 * 224 * 3 * java.lang.Float.SIZE / java.lang.Byte.SIZE;
ByteBuffer inputBuffer =
        ByteBuffer.allocateDirect(inBufferSize).order(ByteOrder.nativeOrder());
// Then populate with input data.

int outBufferSize = 1 * 1000 * java.lang.Float.SIZE / java.lang.Byte.SIZE;
ByteBuffer outputBuffer =
        ByteBuffer.allocateDirect(outBufferSize).order(ByteOrder.nativeOrder());

interpreter.run(inputBuffer, outputBuffer);

4. Çıkış işleme kodunu güncelleme

Son olarak, modelin çıkışını FirebaseModelOutputs objectgetOutput() yöntemiyle almak yerine ByteBuffer çıkışını kullanım alanınız için uygun olan yapıya dönüştürün.

Örneğin, sınıflandırma yapıyorsanız aşağıdaki gibi değişiklikler yapabilirsiniz:

Önce

Kotlin

val output = result.getOutput(0)
val probabilities = output[0]
try {
    val reader = BufferedReader(InputStreamReader(assets.open("custom_labels.txt")))
    for (probability in probabilities) {
        val label: String = reader.readLine()
        println("$label: $probability")
    }
} catch (e: IOException) {
    // File not found?
}

Java

float[][] output = result.getOutput(0);
float[] probabilities = output[0];
try {
    BufferedReader reader = new BufferedReader(
          new InputStreamReader(getAssets().open("custom_labels.txt")));
    for (float probability : probabilities) {
        String label = reader.readLine();
        Log.i(TAG, String.format("%s: %1.4f", label, probability));
    }
} catch (IOException e) {
    // File not found?
}

Sonra

Kotlin

modelOutput.rewind()
val probabilities = modelOutput.asFloatBuffer()
try {
    val reader = BufferedReader(
            InputStreamReader(assets.open("custom_labels.txt")))
    for (i in probabilities.capacity()) {
        val label: String = reader.readLine()
        val probability = probabilities.get(i)
        println("$label: $probability")
    }
} catch (e: IOException) {
    // File not found?
}

Java

modelOutput.rewind();
FloatBuffer probabilities = modelOutput.asFloatBuffer();
try {
    BufferedReader reader = new BufferedReader(
            new InputStreamReader(getAssets().open("custom_labels.txt")));
    for (int i = 0; i < probabilities.capacity(); i++) {
        String label = reader.readLine();
        float probability = probabilities.get(i);
        Log.i(TAG, String.format("%s: %1.4f", label, probability));
    }
} catch (IOException e) {
    // File not found?
}