Mengenali Teks dalam Gambar dengan ML Kit di Android

Anda dapat menggunakan ML Kit untuk mengenali teks dalam gambar. ML Kit memiliki API tujuan umum yang cocok untuk mengenali teks dalam gambar, seperti teks rambu jalan, dan API yang dioptimalkan untuk mengenali teks dalam dokumen. API tujuan umum ini memiliki model di perangkat dan model berbasis cloud. Pengenalan teks dokumen hanya tersedia pada model berbasis cloud. Lihat ringkasan untuk mengetahui perbandingan antara model berbasis cloud dan model di perangkat.

Sebelum memulai

  1. Tambahkan Firebase ke project Android jika Anda belum melakukannya.
  2. Tambahkan dependensi untuk library Android ML Kit ke file Gradle modul (level aplikasi), biasanya app/build.gradle:
    apply plugin: 'com.android.application'
    apply plugin: 'com.google.gms.google-services'
    
    dependencies {
      // ...
    
      implementation 'com.google.firebase:firebase-ml-vision:24.0.3'
    }
    
  3. Opsional tetapi direkomendasikan: Jika menggunakan API di perangkat, konfigurasi aplikasi agar mendownload model ML secara otomatis ke perangkat setelah aplikasi diinstal dari Play Store.

    Untuk melakukannya, tambahkan deklarasi berikut ke file AndroidManifest.xml aplikasi Anda:

    <application ...>
      ...
      <meta-data
          android:name="com.google.firebase.ml.vision.DEPENDENCIES"
          android:value="ocr" />
      <!-- To use multiple models: android:value="ocr,model2,model3" -->
    </application>
    
    Jika Anda tidak mengaktifkan download model waktu-instal, model ini akan didownload saat pertama kali Anda menjalankan detektor di perangkat. Permintaan yang Anda buat sebelum download selesai tidak akan menghasilkan apa pun.
  4. Jika ingin menggunakan model berbasis Cloud, dan belum mengaktifkan API berbasis Cloud untuk project Anda, lakukan sekarang:

    1. Buka halaman ML Kit API pada Firebase console.
    2. Jika belum mengupgrade project ke paket harga Blaze, klik Upgrade untuk melakukannya. (Anda akan diminta untuk mengupgrade hanya jika project tersebut tidak menggunakan paket Blaze.)

      Hanya project tingkat Blaze yang dapat menggunakan API berbasis Cloud.

    3. Jika API berbasis Cloud belum diaktifkan, klik Aktifkan API berbasis Cloud.

    Jika hanya ingin menggunakan model di perangkat, Anda dapat melewati langkah ini.

Kini Anda siap untuk mulai mengenali teks dalam gambar.

Pedoman gambar input

  • Agar ML Kit dapat secara akurat mengenali teks, gambar input harus berisi teks yang diwakili oleh data piksel yang cukup. Idealnya, untuk teks Latin, setiap karakter harus berukuran setidaknya 16x16 piksel. Untuk teks China, Jepang, dan Korea (hanya didukung oleh API berbasis cloud), setiap karakter harus berukuran 24x24 piksel. Untuk semua bahasa, umumnya ukuran karakter yang lebih besar dari 24x24 piksel tidak meningkatkan akurasi.

    Jadi, misalnya, gambar 640x480 piksel mungkin sudah cukup untuk memindai kartu nama yang menempati lebar penuh gambar. Untuk memindai dokumen yang dicetak pada kertas berukuran letter, gambar 720x1280 piksel mungkin diperlukan.

  • Fokus gambar yang buruk dapat menurunkan akurasi pengenalan teks. Jika tidak memperoleh hasil yang layak, coba minta pengguna untuk mengambil ulang gambar.

  • Jika mengenali teks dalam aplikasi real-time, Anda mungkin perlu mempertimbangkan dimensi keseluruhan gambar input. Gambar yang lebih kecil dapat diproses lebih cepat. Jadi, untuk mengurangi latensi, ambil gambar dengan resolusi lebih rendah (ingat persyaratan akurasi di atas) dan pastikan bahwa teks menempati gambar seluas mungkin. Lihat juga Tips untuk meningkatkan performa real-time.


Mengenali teks dalam gambar

Untuk mengenali teks dalam gambar menggunakan model berbasis cloud atau model di perangkat, jalankan pengenal teks seperti yang dijelaskan di bawah ini.

1. Jalankan pengenal teks

Untuk mengenali teks dalam gambar, buat objek FirebaseVisionImage dari Bitmap, media.Image, ByteBuffer, array byte, atau file di perangkat. Lalu, teruskan objek FirebaseVisionImage ke metode processImage FirebaseVisionTextRecognizer.

  1. Buat objek FirebaseVisionImage dari gambar Anda.

    • Untuk membuat objek FirebaseVisionImage dari objek media.Image, seperti saat mengambil gambar dari kamera perangkat, teruskan objek media.Image dan nilai rotasi gambar ke FirebaseVisionImage.fromMediaImage().

      Jika Anda menggunakan library CameraX, class OnImageCapturedListener dan ImageAnalysis.Analyzer menghitung nilai rotasi, sehingga Anda hanya perlu mengonversi rotasi ke salah satu konstanta ROTATION_ ML Kit sebelum memanggil FirebaseVisionImage.fromMediaImage():

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Kit Vision API
              // ...
          }
      }
      

      Kotlin+KTX

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Kit Vision API
                  // ...
              }
          }
      }
      

      Jika tidak menggunakan library kamera yang memberikan nilai rotasi gambar, Anda dapat menghitungnya dari rotasi perangkat dan orientasi sensor kamera pada perangkat:

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Kotlin+KTX

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      Lalu, teruskan objek media.Image dan nilai rotasi ke FirebaseVisionImage.fromMediaImage():

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
    • Untuk membuat objek FirebaseVisionImage dari URI file, teruskan konteks aplikasi dan URI file ke FirebaseVisionImage.fromFilePath(). Hal ini berguna saat Anda menggunakan intent ACTION_GET_CONTENT untuk meminta pengguna memilih gambar dari aplikasi galeri mereka.

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }

      Kotlin+KTX

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }
    • Untuk membuat objek FirebaseVisionImage dari ByteBuffer atau array byte, pertama-tama hitung rotasi gambar seperti yang dijelaskan di atas untuk input media.Image.

      Lalu, buat objek FirebaseVisionImageMetadata yang berisi tinggi, lebar, format encoding warna, dan rotasi gambar:

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Kotlin+KTX

      val metadata = FirebaseVisionImageMetadata.Builder()
              .setWidth(480) // 480x360 is typically sufficient for
              .setHeight(360) // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build()

      Gunakan buffering atau array, dan objek metadata, untuk membuat objek FirebaseVisionImage:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
    • Untuk membuat objek FirebaseVisionImage dari objek Bitmap:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromBitmap(bitmap)
      Gambar yang diwakili oleh objek Bitmap harus berposisi tegak, tanpa perlu rotasi tambahan.

  2. Dapatkan instance FirebaseVisionTextRecognizer.

    Untuk menggunakan model di perangkat:

    Java

    FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance()
            .getOnDeviceTextRecognizer();

    Kotlin+KTX

    val detector = FirebaseVision.getInstance()
            .onDeviceTextRecognizer

    Untuk menggunakan model berbasis cloud:

    Java

    FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance()
            .getCloudTextRecognizer();
    // Or, to change the default settings:
    //   FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance()
    //          .getCloudTextRecognizer(options);
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FirebaseVisionCloudTextRecognizerOptions options = new FirebaseVisionCloudTextRecognizerOptions.Builder()
            .setLanguageHints(Arrays.asList("en", "hi"))
            .build();
    

    Kotlin+KTX

    val detector = FirebaseVision.getInstance().cloudTextRecognizer
    // Or, to change the default settings:
    // val detector = FirebaseVision.getInstance().getCloudTextRecognizer(options)
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    val options = FirebaseVisionCloudTextRecognizerOptions.Builder()
            .setLanguageHints(listOf("en", "hi"))
            .build()
    
  3. Terakhir, teruskan gambar ke metode processImage:

    Java

    Task<FirebaseVisionText> result =
            detector.processImage(image)
                    .addOnSuccessListener(new OnSuccessListener<FirebaseVisionText>() {
                        @Override
                        public void onSuccess(FirebaseVisionText firebaseVisionText) {
                            // Task completed successfully
                            // ...
                        }
                    })
                    .addOnFailureListener(
                            new OnFailureListener() {
                                @Override
                                public void onFailure(@NonNull Exception e) {
                                    // Task failed with an exception
                                    // ...
                                }
                            });

    Kotlin+KTX

    val result = detector.processImage(image)
            .addOnSuccessListener { firebaseVisionText ->
                // Task completed successfully
                // ...
            }
            .addOnFailureListener { e ->
                // Task failed with an exception
                // ...
            }

2. Ekstrak teks dari blok teks yang dikenali

Jika operasi pengenalan teks berhasil, objek FirebaseVisionText akan diteruskan ke pemroses peristiwa sukses. Objek FirebaseVisionText berisi teks lengkap yang dikenali dalam gambar, serta berisi nol objek TextBlock atau lebih.

Setiap TextBlock mewakili blok teks persegi panjang yang berisi nol objek Line atau lebih. Setiap objek Line berisi nol objek Element atau lebih, yang mewakili kata dan entitas seperti kata (tanggal, angka, dan sebagainya).

Untuk setiap objek TextBlock, Line, dan Element, Anda bisa mendapatkan teks yang dikenali di area dan koordinat pembatas area tersebut.

Contoh:

Java

String resultText = result.getText();
for (FirebaseVisionText.TextBlock block: result.getTextBlocks()) {
    String blockText = block.getText();
    Float blockConfidence = block.getConfidence();
    List<RecognizedLanguage> blockLanguages = block.getRecognizedLanguages();
    Point[] blockCornerPoints = block.getCornerPoints();
    Rect blockFrame = block.getBoundingBox();
    for (FirebaseVisionText.Line line: block.getLines()) {
        String lineText = line.getText();
        Float lineConfidence = line.getConfidence();
        List<RecognizedLanguage> lineLanguages = line.getRecognizedLanguages();
        Point[] lineCornerPoints = line.getCornerPoints();
        Rect lineFrame = line.getBoundingBox();
        for (FirebaseVisionText.Element element: line.getElements()) {
            String elementText = element.getText();
            Float elementConfidence = element.getConfidence();
            List<RecognizedLanguage> elementLanguages = element.getRecognizedLanguages();
            Point[] elementCornerPoints = element.getCornerPoints();
            Rect elementFrame = element.getBoundingBox();
        }
    }
}

Kotlin+KTX

val resultText = result.text
for (block in result.textBlocks) {
    val blockText = block.text
    val blockConfidence = block.confidence
    val blockLanguages = block.recognizedLanguages
    val blockCornerPoints = block.cornerPoints
    val blockFrame = block.boundingBox
    for (line in block.lines) {
        val lineText = line.text
        val lineConfidence = line.confidence
        val lineLanguages = line.recognizedLanguages
        val lineCornerPoints = line.cornerPoints
        val lineFrame = line.boundingBox
        for (element in line.elements) {
            val elementText = element.text
            val elementConfidence = element.confidence
            val elementLanguages = element.recognizedLanguages
            val elementCornerPoints = element.cornerPoints
            val elementFrame = element.boundingBox
        }
    }
}

Tips untuk meningkatkan performa real-time

Jika ingin menggunakan model di perangkat untuk mengenali teks dalam aplikasi real-time, ikuti pedoman berikut ini untuk mencapai kecepatan frame terbaik:

  • Batasi panggilan ke pengenal teks. Jika frame video baru tersedia saat pengenal teks sedang berjalan, hapus frame tersebut.
  • Jika Anda menggunakan output pengenal teks untuk menempatkan grafis pada gambar input, pertama-tama dapatkan hasilnya dari ML Kit, lalu render gambar dan tempatkan grafis dalam satu langkah. Dengan demikian, Anda hanya merender ke permukaan tampilan sekali untuk setiap frame input.
  • Jika Anda menggunakan Camera2 API, ambil gambar dalam format ImageFormat.YUV_420_888.

    Jika Anda menggunakan Camera API versi lama, ambil gambar dalam format ImageFormat.NV21.

  • Pertimbangkan untuk mengambil gambar dengan resolusi lebih rendah. Namun, perhatikan juga persyaratan dimensi gambar API ini.

Langkah berikutnya


Mengenali teks dalam gambar dokumen

Untuk mengenali teks dokumen, konfigurasi dan jalankan pengenal teks dokumen berbasis cloud seperti yang dijelaskan di bawah ini.

API pengenalan teks dokumen, yang dijelaskan di bawah ini, menyediakan antarmuka yang ditujukan untuk memudahkan Anda bekerja dengan gambar dokumen. Namun, jika lebih menyukai antarmuka yang disediakan oleh FirebaseVisionTextRecognizer API, Anda dapat menggunakannya untuk memindai dokumen dengan mengonfigurasi pengenal teks cloud untuk menggunakan model teks padat.

Untuk menggunakan API pengenalan teks dokumen, jalankan langkah-langkah berikut.

1. Jalankan pengenal teks

Untuk mengenali teks dalam gambar, buat objek FirebaseVisionImage dari Bitmap, media.Image, ByteBuffer, array byte, atau file di perangkat. Lalu, teruskan objek FirebaseVisionImage ke metode processImage FirebaseVisionDocumentTextRecognizer.

  1. Buat objek FirebaseVisionImage dari gambar Anda.

    • Untuk membuat objek FirebaseVisionImage dari objek media.Image, seperti saat mengambil gambar dari kamera perangkat, teruskan objek media.Image dan nilai rotasi gambar ke FirebaseVisionImage.fromMediaImage().

      Jika Anda menggunakan library CameraX, class OnImageCapturedListener dan ImageAnalysis.Analyzer menghitung nilai rotasi, sehingga Anda hanya perlu mengonversi rotasi ke salah satu konstanta ROTATION_ ML Kit sebelum memanggil FirebaseVisionImage.fromMediaImage():

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Kit Vision API
              // ...
          }
      }
      

      Kotlin+KTX

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Kit Vision API
                  // ...
              }
          }
      }
      

      Jika tidak menggunakan library kamera yang memberikan nilai rotasi gambar, Anda dapat menghitungnya dari rotasi perangkat dan orientasi sensor kamera pada perangkat:

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Kotlin+KTX

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      Lalu, teruskan objek media.Image dan nilai rotasi ke FirebaseVisionImage.fromMediaImage():

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
    • Untuk membuat objek FirebaseVisionImage dari URI file, teruskan konteks aplikasi dan URI file ke FirebaseVisionImage.fromFilePath(). Hal ini berguna saat Anda menggunakan intent ACTION_GET_CONTENT untuk meminta pengguna memilih gambar dari aplikasi galeri mereka.

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }

      Kotlin+KTX

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }
    • Untuk membuat objek FirebaseVisionImage dari ByteBuffer atau array byte, pertama-tama hitung rotasi gambar seperti yang dijelaskan di atas untuk input media.Image.

      Lalu, buat objek FirebaseVisionImageMetadata yang berisi tinggi, lebar, format encoding warna, dan rotasi gambar:

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Kotlin+KTX

      val metadata = FirebaseVisionImageMetadata.Builder()
              .setWidth(480) // 480x360 is typically sufficient for
              .setHeight(360) // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build()

      Gunakan buffering atau array, dan objek metadata, untuk membuat objek FirebaseVisionImage:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
    • Untuk membuat objek FirebaseVisionImage dari objek Bitmap:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromBitmap(bitmap)
      Gambar yang diwakili oleh objek Bitmap harus berposisi tegak, tanpa perlu rotasi tambahan.

  2. Dapatkan instance FirebaseVisionDocumentTextRecognizer:

    Java

    FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance()
            .getCloudDocumentTextRecognizer();
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FirebaseVisionCloudDocumentRecognizerOptions options =
            new FirebaseVisionCloudDocumentRecognizerOptions.Builder()
                    .setLanguageHints(Arrays.asList("en", "hi"))
                    .build();
    FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance()
            .getCloudDocumentTextRecognizer(options);

    Kotlin+KTX

    val detector = FirebaseVision.getInstance()
            .cloudDocumentTextRecognizer
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    val options = FirebaseVisionCloudDocumentRecognizerOptions.Builder()
            .setLanguageHints(listOf("en", "hi"))
            .build()
    val detector = FirebaseVision.getInstance()
            .getCloudDocumentTextRecognizer(options)

  3. Terakhir, teruskan gambar ke metode processImage:

    Java

    detector.processImage(myImage)
            .addOnSuccessListener(new OnSuccessListener<FirebaseVisionDocumentText>() {
                @Override
                public void onSuccess(FirebaseVisionDocumentText result) {
                    // Task completed successfully
                    // ...
                }
            })
            .addOnFailureListener(new OnFailureListener() {
                @Override
                public void onFailure(@NonNull Exception e) {
                    // Task failed with an exception
                    // ...
                }
            });

    Kotlin+KTX

    detector.processImage(myImage)
            .addOnSuccessListener { firebaseVisionDocumentText ->
                // Task completed successfully
                // ...
            }
            .addOnFailureListener { e ->
                // Task failed with an exception
                // ...
            }

2. Mengekstrak teks dari blok teks yang dikenali

Jika operasi pengenalan teks berhasil, objek FirebaseVisionDocumentText akan ditampilkan. Objek FirebaseVisionDocumentText berisi teks lengkap yang dikenali dalam gambar, dan hierarki objek yang mencerminkan struktur dokumen yang dikenali:

Untuk setiap objek Block, Paragraph, Word, dan Symbol, Anda bisa mendapatkan teks yang dikenali di area dan koordinat pembatas area tersebut.

Contoh:

Java

String resultText = result.getText();
for (FirebaseVisionDocumentText.Block block: result.getBlocks()) {
    String blockText = block.getText();
    Float blockConfidence = block.getConfidence();
    List<RecognizedLanguage> blockRecognizedLanguages = block.getRecognizedLanguages();
    Rect blockFrame = block.getBoundingBox();
    for (FirebaseVisionDocumentText.Paragraph paragraph: block.getParagraphs()) {
        String paragraphText = paragraph.getText();
        Float paragraphConfidence = paragraph.getConfidence();
        List<RecognizedLanguage> paragraphRecognizedLanguages = paragraph.getRecognizedLanguages();
        Rect paragraphFrame = paragraph.getBoundingBox();
        for (FirebaseVisionDocumentText.Word word: paragraph.getWords()) {
            String wordText = word.getText();
            Float wordConfidence = word.getConfidence();
            List<RecognizedLanguage> wordRecognizedLanguages = word.getRecognizedLanguages();
            Rect wordFrame = word.getBoundingBox();
            for (FirebaseVisionDocumentText.Symbol symbol: word.getSymbols()) {
                String symbolText = symbol.getText();
                Float symbolConfidence = symbol.getConfidence();
                List<RecognizedLanguage> symbolRecognizedLanguages = symbol.getRecognizedLanguages();
                Rect symbolFrame = symbol.getBoundingBox();
            }
        }
    }
}

Kotlin+KTX

val resultText = result.text
for (block in result.blocks) {
    val blockText = block.text
    val blockConfidence = block.confidence
    val blockRecognizedLanguages = block.recognizedLanguages
    val blockFrame = block.boundingBox
    for (paragraph in block.paragraphs) {
        val paragraphText = paragraph.text
        val paragraphConfidence = paragraph.confidence
        val paragraphRecognizedLanguages = paragraph.recognizedLanguages
        val paragraphFrame = paragraph.boundingBox
        for (word in paragraph.words) {
            val wordText = word.text
            val wordConfidence = word.confidence
            val wordRecognizedLanguages = word.recognizedLanguages
            val wordFrame = word.boundingBox
            for (symbol in word.symbols) {
                val symbolText = symbol.text
                val symbolConfidence = symbol.confidence
                val symbolRecognizedLanguages = symbol.recognizedLanguages
                val symbolFrame = symbol.boundingBox
            }
        }
    }
}

Langkah berikutnya