Android-এ Firebase ML সহ লেবেল চিত্রগুলি

ছবিতে স্বীকৃত বস্তুগুলিকে লেবেল করার জন্য আপনি Firebase ML ব্যবহার করতে পারেন। এই API এর বৈশিষ্ট্যগুলি সম্পর্কে তথ্যের জন্য ওভারভিউ দেখুন।

শুরু করার আগে

  1. যদি আপনি ইতিমধ্যেই না করে থাকেন, তাহলে আপনার অ্যান্ড্রয়েড প্রজেক্টে Firebase যোগ করুন
  2. আপনার মডিউল (অ্যাপ-লেভেল) গ্র্যাডেল ফাইলে (সাধারণত <project>/<app-module>/build.gradle.kts অথবা <project>/<app-module>/build.gradle ), Android এর জন্য Firebase ML Vision লাইব্রেরির জন্য নির্ভরতা যোগ করুন। লাইব্রেরি সংস্করণ নিয়ন্ত্রণ করতে আমরা Firebase Android BoM ব্যবহার করার পরামর্শ দিই।
    dependencies {
        // Import the BoM for the Firebase platform
        implementation(platform("com.google.firebase:firebase-bom:34.9.0"))
    
        // Add the dependency for the Firebase ML Vision library
        // When using the BoM, you don't specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision'
    }

    Firebase Android BoM ব্যবহার করে, আপনার অ্যাপ সর্বদা Firebase Android লাইব্রেরির সামঞ্জস্যপূর্ণ সংস্করণ ব্যবহার করবে।

    (বিকল্প) BoM ব্যবহার না করেই Firebase লাইব্রেরি নির্ভরতা যোগ করুন

    যদি আপনি Firebase BoM ব্যবহার না করার সিদ্ধান্ত নেন, তাহলে আপনাকে প্রতিটি Firebase লাইব্রেরি সংস্করণ তার নির্ভরতা লাইনে নির্দিষ্ট করতে হবে।

    মনে রাখবেন যে আপনি যদি আপনার অ্যাপে একাধিক Firebase লাইব্রেরি ব্যবহার করেন, তাহলে আমরা দৃঢ়ভাবে লাইব্রেরি সংস্করণগুলি পরিচালনা করার জন্য BoM ব্যবহার করার পরামর্শ দিচ্ছি, যা নিশ্চিত করে যে সমস্ত সংস্করণ সামঞ্জস্যপূর্ণ।

    dependencies {
        // Add the dependency for the Firebase ML Vision library
        // When NOT using the BoM, you must specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision:24.1.0'
    }
  3. যদি আপনি ইতিমধ্যেই আপনার প্রকল্পের জন্য ক্লাউড-ভিত্তিক API সক্রিয় না করে থাকেন, তাহলে এখনই তা করুন:

    1. Firebase কনসোলে Firebase ML API পৃষ্ঠাটি খুলুন।
    2. যদি আপনি ইতিমধ্যেই আপনার প্রকল্পটিকে পে-অ্যাজ-ইউ-গো ব্লেজ প্রাইসিং প্ল্যানে আপগ্রেড না করে থাকেন, তাহলে আপগ্রেডে ক্লিক করে তা করুন। (আপনার প্রকল্পটি ব্লেজ প্রাইসিং প্ল্যানে না থাকলেই আপনাকে আপগ্রেড করতে বলা হবে।)

      শুধুমাত্র ব্লেজ প্রাইসিং প্ল্যানের প্রকল্পগুলিই ক্লাউড-ভিত্তিক API ব্যবহার করতে পারবে।

    3. যদি ক্লাউড-ভিত্তিক API গুলি ইতিমধ্যেই সক্ষম না থাকে, তাহলে ক্লাউড-ভিত্তিক API গুলি সক্ষম করুন এ ক্লিক করুন।

এখন আপনি ছবি লেবেল করার জন্য প্রস্তুত।

১. ইনপুট ইমেজ প্রস্তুত করুন

আপনার ছবি থেকে একটি FirebaseVisionImage অবজেক্ট তৈরি করুন। যখন আপনি একটি Bitmap ব্যবহার করেন অথবা যদি আপনি camera2 API ব্যবহার করেন, তাহলে একটি JPEG-ফর্ম্যাটেড media.Image ব্যবহার করেন, যা সম্ভব হলে সুপারিশ করা হয়, তখন ছবির লেবেলারটি সবচেয়ে দ্রুত চলে।

  • একটি media.Image অবজেক্ট থেকে একটি FirebaseVisionImage অবজেক্ট তৈরি করতে, যেমন একটি ডিভাইসের ক্যামেরা থেকে একটি ছবি তোলার সময়, media.Image অবজেক্ট এবং ছবির ঘূর্ণন FirebaseVisionImage.fromMediaImage() এ পাস করুন।

    যদি আপনি CameraX লাইব্রেরি ব্যবহার করেন, তাহলে OnImageCapturedListener এবং ImageAnalysis.Analyzer ক্লাসগুলি আপনার জন্য ঘূর্ণন মান গণনা করে, তাই আপনাকে FirebaseVisionImage.fromMediaImage() কল করার আগে ঘূর্ণনটিকে Firebase ML এর ROTATION_ ধ্রুবকগুলির একটিতে রূপান্তর করতে হবে:

    Kotlin

    private class YourImageAnalyzer : ImageAnalysis.Analyzer {
        private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
            0 -> FirebaseVisionImageMetadata.ROTATION_0
            90 -> FirebaseVisionImageMetadata.ROTATION_90
            180 -> FirebaseVisionImageMetadata.ROTATION_180
            270 -> FirebaseVisionImageMetadata.ROTATION_270
            else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
        }
    
        override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
            val mediaImage = imageProxy?.image
            val imageRotation = degreesToFirebaseRotation(degrees)
            if (mediaImage != null) {
                val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                // Pass image to an ML Vision API
                // ...
            }
        }
    }

    Java

    private class YourAnalyzer implements ImageAnalysis.Analyzer {
    
        private int degreesToFirebaseRotation(int degrees) {
            switch (degrees) {
                case 0:
                    return FirebaseVisionImageMetadata.ROTATION_0;
                case 90:
                    return FirebaseVisionImageMetadata.ROTATION_90;
                case 180:
                    return FirebaseVisionImageMetadata.ROTATION_180;
                case 270:
                    return FirebaseVisionImageMetadata.ROTATION_270;
                default:
                    throw new IllegalArgumentException(
                            "Rotation must be 0, 90, 180, or 270.");
            }
        }
    
        @Override
        public void analyze(ImageProxy imageProxy, int degrees) {
            if (imageProxy == null || imageProxy.getImage() == null) {
                return;
            }
            Image mediaImage = imageProxy.getImage();
            int rotation = degreesToFirebaseRotation(degrees);
            FirebaseVisionImage image =
                    FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
            // Pass image to an ML Vision API
            // ...
        }
    }

    যদি আপনি এমন কোনও ক্যামেরা লাইব্রেরি ব্যবহার না করেন যা আপনাকে ছবির ঘূর্ণন দেয়, তাহলে আপনি ডিভাইসের ঘূর্ণন এবং ডিভাইসে ক্যামেরা সেন্সরের ওরিয়েন্টেশন থেকে এটি গণনা করতে পারেন:

    Kotlin

    private val ORIENTATIONS = SparseIntArray()
    
    init {
        ORIENTATIONS.append(Surface.ROTATION_0, 90)
        ORIENTATIONS.append(Surface.ROTATION_90, 0)
        ORIENTATIONS.append(Surface.ROTATION_180, 270)
        ORIENTATIONS.append(Surface.ROTATION_270, 180)
    }
    /**
     * Get the angle by which an image must be rotated given the device's current
     * orientation.
     */
    @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
    @Throws(CameraAccessException::class)
    private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
        // Get the device's current rotation relative to its "native" orientation.
        // Then, from the ORIENTATIONS table, look up the angle the image must be
        // rotated to compensate for the device's rotation.
        val deviceRotation = activity.windowManager.defaultDisplay.rotation
        var rotationCompensation = ORIENTATIONS.get(deviceRotation)
    
        // On most devices, the sensor orientation is 90 degrees, but for some
        // devices it is 270 degrees. For devices with a sensor orientation of
        // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
        val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
        val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
        rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
    
        // Return the corresponding FirebaseVisionImageMetadata rotation value.
        val result: Int
        when (rotationCompensation) {
            0 -> result = FirebaseVisionImageMetadata.ROTATION_0
            90 -> result = FirebaseVisionImageMetadata.ROTATION_90
            180 -> result = FirebaseVisionImageMetadata.ROTATION_180
            270 -> result = FirebaseVisionImageMetadata.ROTATION_270
            else -> {
                result = FirebaseVisionImageMetadata.ROTATION_0
                Log.e(TAG, "Bad rotation value: $rotationCompensation")
            }
        }
        return result
    }

    Java

    private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
    static {
        ORIENTATIONS.append(Surface.ROTATION_0, 90);
        ORIENTATIONS.append(Surface.ROTATION_90, 0);
        ORIENTATIONS.append(Surface.ROTATION_180, 270);
        ORIENTATIONS.append(Surface.ROTATION_270, 180);
    }
    
    /**
     * Get the angle by which an image must be rotated given the device's current
     * orientation.
     */
    @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
    private int getRotationCompensation(String cameraId, Activity activity, Context context)
            throws CameraAccessException {
        // Get the device's current rotation relative to its "native" orientation.
        // Then, from the ORIENTATIONS table, look up the angle the image must be
        // rotated to compensate for the device's rotation.
        int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
        int rotationCompensation = ORIENTATIONS.get(deviceRotation);
    
        // On most devices, the sensor orientation is 90 degrees, but for some
        // devices it is 270 degrees. For devices with a sensor orientation of
        // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
        CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
        int sensorOrientation = cameraManager
                .getCameraCharacteristics(cameraId)
                .get(CameraCharacteristics.SENSOR_ORIENTATION);
        rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
    
        // Return the corresponding FirebaseVisionImageMetadata rotation value.
        int result;
        switch (rotationCompensation) {
            case 0:
                result = FirebaseVisionImageMetadata.ROTATION_0;
                break;
            case 90:
                result = FirebaseVisionImageMetadata.ROTATION_90;
                break;
            case 180:
                result = FirebaseVisionImageMetadata.ROTATION_180;
                break;
            case 270:
                result = FirebaseVisionImageMetadata.ROTATION_270;
                break;
            default:
                result = FirebaseVisionImageMetadata.ROTATION_0;
                Log.e(TAG, "Bad rotation value: " + rotationCompensation);
        }
        return result;
    }

    তারপর, media.Image অবজেক্ট এবং ঘূর্ণন মানটি FirebaseVisionImage.fromMediaImage() এ পাস করুন:

    Kotlin

    val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
  • একটি ফাইল URI থেকে একটি FirebaseVisionImage অবজেক্ট তৈরি করতে, অ্যাপের প্রসঙ্গটি পাস করুন এবং URI ফাইলটি FirebaseVisionImage.fromFilePath() এ দিন। ব্যবহারকারীকে তাদের গ্যালারি অ্যাপ থেকে একটি ছবি নির্বাচন করতে অনুরোধ করার জন্য ACTION_GET_CONTENT ইন্টেন্ট ব্যবহার করলে এটি কার্যকর।

    Kotlin

    val image: FirebaseVisionImage
    try {
        image = FirebaseVisionImage.fromFilePath(context, uri)
    } catch (e: IOException) {
        e.printStackTrace()
    }

    Java

    FirebaseVisionImage image;
    try {
        image = FirebaseVisionImage.fromFilePath(context, uri);
    } catch (IOException e) {
        e.printStackTrace();
    }
  • ByteBuffer অথবা বাইট অ্যারে থেকে FirebaseVisionImage অবজেক্ট তৈরি করতে, প্রথমে media.Image ইনপুটের জন্য উপরে বর্ণিত চিত্র ঘূর্ণন গণনা করুন।

    তারপর, একটি FirebaseVisionImageMetadata অবজেক্ট তৈরি করুন যাতে ছবির উচ্চতা, প্রস্থ, রঙ এনকোডিং ফর্ম্যাট এবং ঘূর্ণন থাকে:

    Kotlin

    val metadata = FirebaseVisionImageMetadata.Builder()
        .setWidth(480) // 480x360 is typically sufficient for
        .setHeight(360) // image recognition
        .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
        .setRotation(rotation)
        .build()

    Java

    FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
            .setWidth(480)   // 480x360 is typically sufficient for
            .setHeight(360)  // image recognition
            .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
            .setRotation(rotation)
            .build();

    FirebaseVisionImage অবজেক্ট তৈরি করতে বাফার বা অ্যারে এবং মেটাডেটা অবজেক্ট ব্যবহার করুন:

    Kotlin

    val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
    // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
    // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
  • একটি Bitmap অবজেক্ট থেকে একটি FirebaseVisionImage অবজেক্ট তৈরি করতে:

    Kotlin

    val image = FirebaseVisionImage.fromBitmap(bitmap)

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
    Bitmap অবজেক্ট দ্বারা উপস্থাপিত ছবিটি অবশ্যই খাড়া হতে হবে, অতিরিক্ত ঘূর্ণনের প্রয়োজন হবে না।

২. ইমেজ লেবেলার কনফিগার করুন এবং চালান

একটি ছবিতে অবজেক্ট লেবেল করতে, FirebaseVisionImage অবজেক্টটিকে FirebaseVisionImageLabeler এর processImage পদ্ধতিতে পাস করুন।

  1. প্রথমে, FirebaseVisionImageLabeler এর একটি উদাহরণ নিন।

    Kotlin

    val labeler = FirebaseVision.getInstance().getCloudImageLabeler()
    
    // Or, to set the minimum confidence required:
    // val options = FirebaseVisionCloudImageLabelerOptions.Builder()
    //     .setConfidenceThreshold(0.7f)
    //     .build()
    // val labeler = FirebaseVision.getInstance().getCloudImageLabeler(options)
    

    Java

    FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance()
        .getCloudImageLabeler();
    
    // Or, to set the minimum confidence required:
    // FirebaseVisionCloudImageLabelerOptions options =
    //     new FirebaseVisionCloudImageLabelerOptions.Builder()
    //         .setConfidenceThreshold(0.7f)
    //         .build();
    // FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance()
    //     .getCloudImageLabeler(options);
    

  2. তারপর, ছবিটি processImage() পদ্ধতিতে পাস করুন:

    Kotlin

    labeler.processImage(image)
        .addOnSuccessListener { labels ->
          // Task completed successfully
          // ...
        }
        .addOnFailureListener { e ->
          // Task failed with an exception
          // ...
        }
    

    Java

    labeler.processImage(image)
        .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionImageLabel>>() {
          @Override
          public void onSuccess(List<FirebaseVisionImageLabel> labels) {
            // Task completed successfully
            // ...
          }
        })
        .addOnFailureListener(new OnFailureListener() {
          @Override
          public void onFailure(@NonNull Exception e) {
            // Task failed with an exception
            // ...
          }
        });
    

৩. লেবেলযুক্ত বস্তু সম্পর্কে তথ্য পান

যদি ইমেজ লেবেলিং অপারেশন সফল হয়, তাহলে FirebaseVisionImageLabel অবজেক্টের একটি তালিকা সাকসেস লিসেনারের কাছে পাঠানো হবে। প্রতিটি FirebaseVisionImageLabel অবজেক্ট এমন কিছু উপস্থাপন করে যা ছবিতে লেবেল করা ছিল। প্রতিটি লেবেলের জন্য, আপনি লেবেলের টেক্সট বিবরণ, এর নলেজ গ্রাফ এন্টিটি আইডি (যদি পাওয়া যায়) এবং ম্যাচের কনফিডেন্স স্কোর পেতে পারেন। উদাহরণস্বরূপ:

Kotlin

for (label in labels) {
  val text = label.text
  val entityId = label.entityId
  val confidence = label.confidence
}

Java

for (FirebaseVisionImageLabel label: labels) {
  String text = label.getText();
  String entityId = label.getEntityId();
  float confidence = label.getConfidence();
}

পরবর্তী পদক্ষেপ