在 iOS 上使用 Firebase ML 來辨識圖片中的文字

你可以使用 Firebase ML 辨識圖片中的文字。Firebase ML 具有一般用途的 API,適用於辨識圖片中的文字 (例如路標上的文字),以及經過最佳化的 API,適用於辨識文件中的文字。

事前準備

    如果尚未將 Firebase 新增至應用程式,請按照入門指南中的步驟操作。 <0

    使用 Swift Package Manager 安裝及管理 Firebase 依附元件。

    1. 在 Xcode 中保持開啟應用程式專案,然後依序點選「File」(檔案) 和「Add Packages」(新增 Package)
    2. 系統提示時,請新增 Firebase Apple 平台 SDK 存放區:
    3.   https://github.com/firebase/firebase-ios-sdk.git
    4. 選擇 Firebase ML 程式庫。
    5. -ObjC 標記新增至目標建構設定的「Other Linker Flags」部分。
    6. 完成後,Xcode 會自動開始在背景中解析並下載依附元件。

    接著,請在應用程式中進行一些設定:

    1. 在應用程式中匯入 Firebase:

      Swift

      import FirebaseMLModelDownloader

      Objective-C

      @import FirebaseMLModelDownloader;
  1. 如果尚未為專案啟用雲端 API,請立即啟用:

    1. Firebase 控制台中開啟「APIs」(API) Firebase ML 頁面
    2. 如果尚未將專案升級至即付即用 Blaze 定價方案,請按一下「升級」。只有在專案未採用 Blaze 定價方案時,系統才會提示您升級。

      只有採用 Blaze 定價方案的專案才能使用雲端 API。

    3. 如果尚未啟用雲端 API,請按一下「啟用雲端 API」

現在可以開始辨識圖片中的文字。

輸入圖片規範

  • 如要讓 Firebase ML 準確辨識文字,輸入圖片必須包含以足夠像素資料呈現的文字。在理想情況下,拉丁文字的每個字元至少應為 16x16 像素。如果是中文、日文和韓文文字,每個字元應為 24x24 像素。一般而言,無論使用哪種語言,字元大於 24x24 像素對準確度沒有幫助。

    舉例來說,如果名片佔滿圖片寬度,640x480 的圖片可能就非常適合掃描名片。如要掃描印在 Letter 尺寸紙張上的文件,可能需要 720x1280 像素的圖片。

  • 如果圖片對焦不佳,可能會影響文字辨識準確度。如果結果不盡理想,請要求使用者重新拍攝圖片。


辨識圖片中的文字

如要辨識圖片中的文字,請按照下文說明執行文字辨識器。

1. 執行文字辨識器

將圖片做為 UIImageCMSampleBufferRef 傳遞至 VisionTextRecognizerprocess(_:completion:) 方法:

  1. 呼叫 cloudTextRecognizer 即可取得 VisionTextRecognizer 的執行個體:

    Swift

    let vision = Vision.vision()
    let textRecognizer = vision.cloudTextRecognizer()
    
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    let options = VisionCloudTextRecognizerOptions()
    options.languageHints = ["en", "hi"]
    let textRecognizer = vision.cloudTextRecognizer(options: options)

    Objective-C

    FIRVision *vision = [FIRVision vision];
    FIRVisionTextRecognizer *textRecognizer = [vision cloudTextRecognizer];
    
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FIRVisionCloudTextRecognizerOptions *options =
            [[FIRVisionCloudTextRecognizerOptions alloc] init];
    options.languageHints = @[@"en", @"hi"];
    FIRVisionTextRecognizer *textRecognizer = [vision cloudTextRecognizerWithOptions:options];
  2. 如要呼叫 Cloud Vision,圖片必須採用 Base64 編碼字串格式。如要處理 UIImage,請按照下列步驟操作:

    Swift

    guard let imageData = uiImage.jpegData(compressionQuality: 1.0) else { return }
    let base64encodedImage = imageData.base64EncodedString()

    Objective-C

    NSData *imageData = UIImageJPEGRepresentation(uiImage, 1.0f);
    NSString *base64encodedImage =
      [imageData base64EncodedStringWithOptions:NSDataBase64Encoding76CharacterLineLength];
  3. 接著,將圖片傳遞至 process(_:completion:) 方法:

    Swift

    textRecognizer.process(visionImage) { result, error in
      guard error == nil, let result = result else {
        // ...
        return
      }
    
      // Recognized text
    }

    Objective-C

    [textRecognizer processImage:image
                      completion:^(FIRVisionText *_Nullable result,
                                   NSError *_Nullable error) {
      if (error != nil || result == nil) {
        // ...
        return;
      }
    
      // Recognized text
    }];

2. 從辨識出的文字區塊擷取文字

如果文字辨識作業成功,系統會傳回 VisionText 物件。VisionText 物件包含圖片中辨識到的完整文字,以及零或多個 VisionTextBlock 物件。

每個 VisionTextBlock 代表一個矩形文字區塊,其中包含零或多個 VisionTextLine 物件。每個 VisionTextLine 物件都包含零個或多個 VisionTextElement 物件,代表字詞和類似字詞的實體 (日期、數字等)。

針對每個 VisionTextBlockVisionTextLineVisionTextElement 物件,您可以取得該區域中辨識的文字,以及該區域的邊界座標。

例如:

Swift

let resultText = result.text
for block in result.blocks {
    let blockText = block.text
    let blockConfidence = block.confidence
    let blockLanguages = block.recognizedLanguages
    let blockCornerPoints = block.cornerPoints
    let blockFrame = block.frame
    for line in block.lines {
        let lineText = line.text
        let lineConfidence = line.confidence
        let lineLanguages = line.recognizedLanguages
        let lineCornerPoints = line.cornerPoints
        let lineFrame = line.frame
        for element in line.elements {
            let elementText = element.text
            let elementConfidence = element.confidence
            let elementLanguages = element.recognizedLanguages
            let elementCornerPoints = element.cornerPoints
            let elementFrame = element.frame
        }
    }
}

Objective-C

NSString *resultText = result.text;
for (FIRVisionTextBlock *block in result.blocks) {
  NSString *blockText = block.text;
  NSNumber *blockConfidence = block.confidence;
  NSArray<FIRVisionTextRecognizedLanguage *> *blockLanguages = block.recognizedLanguages;
  NSArray<NSValue *> *blockCornerPoints = block.cornerPoints;
  CGRect blockFrame = block.frame;
  for (FIRVisionTextLine *line in block.lines) {
    NSString *lineText = line.text;
    NSNumber *lineConfidence = line.confidence;
    NSArray<FIRVisionTextRecognizedLanguage *> *lineLanguages = line.recognizedLanguages;
    NSArray<NSValue *> *lineCornerPoints = line.cornerPoints;
    CGRect lineFrame = line.frame;
    for (FIRVisionTextElement *element in line.elements) {
      NSString *elementText = element.text;
      NSNumber *elementConfidence = element.confidence;
      NSArray<FIRVisionTextRecognizedLanguage *> *elementLanguages = element.recognizedLanguages;
      NSArray<NSValue *> *elementCornerPoints = element.cornerPoints;
      CGRect elementFrame = element.frame;
    }
  }
}

後續步驟


辨識文件圖片中的文字

如要辨識文件中的文字,請按照下列說明設定及執行文件文字辨識器。

下文所述的文件文字辨識 API 提供介面,可更輕鬆地處理文件圖片。不過,如果您偏好稀疏文字 API 提供的介面,可以改用該介面掃描文件,方法是將雲端文字辨識器設定為使用密集文字模型

如要使用文件文字辨識 API,請按照下列指示操作:

1. 執行文字辨識器

將圖片做為 UIImageCMSampleBufferRef 傳遞至 VisionDocumentTextRecognizerprocess(_:completion:) 方法:

  1. 呼叫 cloudDocumentTextRecognizer 即可取得 VisionDocumentTextRecognizer 的執行個體:

    Swift

    let vision = Vision.vision()
    let textRecognizer = vision.cloudDocumentTextRecognizer()
    
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    let options = VisionCloudDocumentTextRecognizerOptions()
    options.languageHints = ["en", "hi"]
    let textRecognizer = vision.cloudDocumentTextRecognizer(options: options)

    Objective-C

    FIRVision *vision = [FIRVision vision];
    FIRVisionDocumentTextRecognizer *textRecognizer = [vision cloudDocumentTextRecognizer];
    
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FIRVisionCloudDocumentTextRecognizerOptions *options =
            [[FIRVisionCloudDocumentTextRecognizerOptions alloc] init];
    options.languageHints = @[@"en", @"hi"];
    FIRVisionDocumentTextRecognizer *textRecognizer = [vision cloudDocumentTextRecognizerWithOptions:options];
  2. 如要呼叫 Cloud Vision,圖片必須採用 Base64 編碼字串格式。如要處理 UIImage,請按照下列步驟操作:

    Swift

    guard let imageData = uiImage.jpegData(compressionQuality: 1.0) else { return }
    let base64encodedImage = imageData.base64EncodedString()

    Objective-C

    NSData *imageData = UIImageJPEGRepresentation(uiImage, 1.0f);
    NSString *base64encodedImage =
      [imageData base64EncodedStringWithOptions:NSDataBase64Encoding76CharacterLineLength];
  3. 接著,將圖片傳遞至 process(_:completion:) 方法:

    Swift

    textRecognizer.process(visionImage) { result, error in
      guard error == nil, let result = result else {
        // ...
        return
      }
    
      // Recognized text
    }

    Objective-C

    [textRecognizer processImage:image
                      completion:^(FIRVisionDocumentText *_Nullable result,
                                   NSError *_Nullable error) {
      if (error != nil || result == nil) {
        // ...
        return;
      }
    
        // Recognized text
    }];

2. 從辨識出的文字區塊擷取文字

如果文字辨識作業成功,系統會傳回 VisionDocumentText 物件。VisionDocumentText 物件包含圖片中辨識到的完整文字,以及反映辨識文件結構的物件階層:

針對每個 VisionDocumentTextBlockVisionDocumentTextParagraphVisionDocumentTextWordVisionDocumentTextSymbol 物件,您可以取得該區域中辨識到的文字,以及該區域的邊界座標。

例如:

Swift

let resultText = result.text
for block in result.blocks {
    let blockText = block.text
    let blockConfidence = block.confidence
    let blockRecognizedLanguages = block.recognizedLanguages
    let blockBreak = block.recognizedBreak
    let blockCornerPoints = block.cornerPoints
    let blockFrame = block.frame
    for paragraph in block.paragraphs {
        let paragraphText = paragraph.text
        let paragraphConfidence = paragraph.confidence
        let paragraphRecognizedLanguages = paragraph.recognizedLanguages
        let paragraphBreak = paragraph.recognizedBreak
        let paragraphCornerPoints = paragraph.cornerPoints
        let paragraphFrame = paragraph.frame
        for word in paragraph.words {
            let wordText = word.text
            let wordConfidence = word.confidence
            let wordRecognizedLanguages = word.recognizedLanguages
            let wordBreak = word.recognizedBreak
            let wordCornerPoints = word.cornerPoints
            let wordFrame = word.frame
            for symbol in word.symbols {
                let symbolText = symbol.text
                let symbolConfidence = symbol.confidence
                let symbolRecognizedLanguages = symbol.recognizedLanguages
                let symbolBreak = symbol.recognizedBreak
                let symbolCornerPoints = symbol.cornerPoints
                let symbolFrame = symbol.frame
            }
        }
    }
}

Objective-C

NSString *resultText = result.text;
for (FIRVisionDocumentTextBlock *block in result.blocks) {
  NSString *blockText = block.text;
  NSNumber *blockConfidence = block.confidence;
  NSArray<FIRVisionTextRecognizedLanguage *> *blockRecognizedLanguages = block.recognizedLanguages;
  FIRVisionTextRecognizedBreak *blockBreak = block.recognizedBreak;
  CGRect blockFrame = block.frame;
  for (FIRVisionDocumentTextParagraph *paragraph in block.paragraphs) {
    NSString *paragraphText = paragraph.text;
    NSNumber *paragraphConfidence = paragraph.confidence;
    NSArray<FIRVisionTextRecognizedLanguage *> *paragraphRecognizedLanguages = paragraph.recognizedLanguages;
    FIRVisionTextRecognizedBreak *paragraphBreak = paragraph.recognizedBreak;
    CGRect paragraphFrame = paragraph.frame;
    for (FIRVisionDocumentTextWord *word in paragraph.words) {
      NSString *wordText = word.text;
      NSNumber *wordConfidence = word.confidence;
      NSArray<FIRVisionTextRecognizedLanguage *> *wordRecognizedLanguages = word.recognizedLanguages;
      FIRVisionTextRecognizedBreak *wordBreak = word.recognizedBreak;
      CGRect wordFrame = word.frame;
      for (FIRVisionDocumentTextSymbol *symbol in word.symbols) {
        NSString *symbolText = symbol.text;
        NSNumber *symbolConfidence = symbol.confidence;
        NSArray<FIRVisionTextRecognizedLanguage *> *symbolRecognizedLanguages = symbol.recognizedLanguages;
        FIRVisionTextRecognizedBreak *symbolBreak = symbol.recognizedBreak;
        CGRect symbolFrame = symbol.frame;
      }
    }
  }
}

後續步驟