Funções aritméticas

Funções aritméticas

Todas as funções aritméticas no Cloud Firestore com compatibilidade com o MongoDB têm os seguintes comportamentos:

  • Será avaliado como NULL se algum dos parâmetros de entrada for NULL.
  • Será avaliado como NaN se algum dos argumentos for NaN.
  • Gera um erro se ocorrer um estouro ou um estouro negativo.

Além disso, quando uma função aritmética usa vários argumentos numéricos de tipos diferentes (por exemplo, add(5.0, 6)), o Cloud Firestore com compatibilidade com o MongoDB converte implicitamente os argumentos para o tipo de entrada mais amplo. Se apenas entradas INT32 forem fornecidas, o tipo de retorno será INT64.

Nome Descrição
ABS Retorna o valor absoluto de um number
ADD Retorna o valor de x + y
SUBTRACT Retorna o valor de x - y
MULTIPLY Retorna o valor de x * y
DIVIDE Retorna o valor de x / y
MOD Retorna o restante da divisão de x / y
CEIL Retorna o teto de um number
FLOOR Retorna o piso de um number
ROUND Arredonda um number para places casas decimais
POW Retorna o valor de base^exponent
SQRT Retorna a raiz quadrada de um number
EXP Retorna o número de Euler elevado à potência de exponent
LN Retorna o logaritmo natural de um number
LOG Retorna o logaritmo de um number
LOG10 Retorna o logaritmo de number na base 10.
RAND Retorna um número de ponto flutuante pseudorrandômico.

ABS

Sintaxe:

abs[N <: INT32 | INT64 | FLOAT64](number: N) -> N

Descrição:

Retorna o valor absoluto de um number.

  • Gera um erro quando a função excederia um valor INT32 ou INT64.

Exemplos:

número abs(number)
10 10
-10 10
10L 10L
-0,0 0,0
10,5 10,5
-10,5 10,5
-231 [error]
-263 [error]

ADICIONAR

Sintaxe:

add[N <: INT32 | INT64 | FLOAT64](x: N, y: N) -> N

Descrição:

Retorna o valor de x + y.

Exemplos:

x y add(x, y)
20 3 23
10,0 1 11.0
22,5 2,0 24,5
INT64.MAX 1 [error]
INT64.MIN -1 [error]
Node.js
const result = await db.pipeline()
  .collection("books")
  .select(field("soldBooks").add(field("unsoldBooks")).as("totalBooks"))
  .execute();

Web

const result = await execute(db.pipeline()
  .collection("books")
  .select(field("soldBooks").add(field("unsoldBooks")).as("totalBooks"))
);
Swift
let result = try await db.pipeline()
  .collection("books")
  .select([Field("soldBooks").add(Field("unsoldBooks")).as("totalBooks")])
  .execute()

Kotlin

val result = db.pipeline()
    .collection("books")
    .select(Expression.add(field("soldBooks"), field("unsoldBooks")).alias("totalBooks"))
    .execute()

Java

Task<Pipeline.Snapshot> result = db.pipeline()
    .collection("books")
    .select(Expression.add(field("soldBooks"), field("unsoldBooks")).alias("totalBooks"))
    .execute();
    
Python
from google.cloud.firestore_v1.pipeline_expressions import Field

result = (
    client.pipeline()
    .collection("books")
    .select(Field.of("soldBooks").add(Field.of("unsoldBooks")).as_("totalBooks"))
    .execute()
)
Java
Pipeline.Snapshot result =
    firestore
        .pipeline()
        .collection("books")
        .select(add(field("soldBooks"), field("unsoldBooks")).as("totalBooks"))
        .execute()
        .get();

SUBTRACT

Sintaxe:

subtract[N <: INT32 | INT64 | FLOAT64](x: N, y: N) -> N

Descrição:

Retorna o valor de x - y.

Exemplos:

x y subtract(x, y)
20 3 17
10,0 1 9.0
22,5 2,0 20,5
INT64.MAX -1 [error]
INT64.MIN 1 [error]
Node.js
const storeCredit = 7;
const result = await db.pipeline()
  .collection("books")
  .select(field("price").subtract(constant(storeCredit)).as("totalCost"))
  .execute();

Web

const storeCredit = 7;
const result = await execute(db.pipeline()
  .collection("books")
  .select(field("price").subtract(constant(storeCredit)).as("totalCost"))
);
Swift
let storeCredit = 7
let result = try await db.pipeline()
  .collection("books")
  .select([Field("price").subtract(Constant(storeCredit)).as("totalCost")])
  .execute()

Kotlin

val storeCredit = 7
val result = db.pipeline()
    .collection("books")
    .select(Expression.subtract(field("price"), storeCredit).alias("totalCost"))
    .execute()

Java

int storeCredit = 7;
Task<Pipeline.Snapshot> result = db.pipeline()
    .collection("books")
    .select(Expression.subtract(field("price"), storeCredit).alias("totalCost"))
    .execute();
    
Python
from google.cloud.firestore_v1.pipeline_expressions import Field

store_credit = 7
result = (
    client.pipeline()
    .collection("books")
    .select(Field.of("price").subtract(store_credit).as_("totalCost"))
    .execute()
)
Java
int storeCredit = 7;
Pipeline.Snapshot result =
    firestore
        .pipeline()
        .collection("books")
        .select(subtract(field("price"), storeCredit).as("totalCost"))
        .execute()
        .get();

MULTIPLY

Sintaxe:

multiply[N <: INT32 | INT64 | FLOAT64](x: N, y: N) -> N

Descrição:

Retorna o valor de x * y.

Exemplos:

x y multiply(x, y)
20 3 60
10,0 1 10,0
22,5 2,0 45,0
INT64.MAX 2 [error]
INT64.MIN 2 [error]
FLOAT64.MAX FLOAT64.MAX +inf
Node.js
const result = await db.pipeline()
  .collection("books")
  .select(field("price").multiply(field("soldBooks")).as("revenue"))
  .execute();

Web

const result = await execute(db.pipeline()
  .collection("books")
  .select(field("price").multiply(field("soldBooks")).as("revenue"))
);
Swift
let result = try await db.pipeline()
  .collection("books")
  .select([Field("price").multiply(Field("soldBooks")).as("revenue")])
  .execute()

Kotlin

val result = db.pipeline()
    .collection("books")
    .select(Expression.multiply(field("price"), field("soldBooks")).alias("revenue"))
    .execute()

Java

Task<Pipeline.Snapshot> result = db.pipeline()
    .collection("books")
    .select(Expression.multiply(field("price"), field("soldBooks")).alias("revenue"))
    .execute();
    
Python
from google.cloud.firestore_v1.pipeline_expressions import Field

result = (
    client.pipeline()
    .collection("books")
    .select(Field.of("price").multiply(Field.of("soldBooks")).as_("revenue"))
    .execute()
)
Java
Pipeline.Snapshot result =
    firestore
        .pipeline()
        .collection("books")
        .select(multiply(field("price"), field("soldBooks")).as("revenue"))
        .execute()
        .get();

DIVIDE

Sintaxe:

divide[N <: INT32 | INT64 | FLOAT64](x: N, y: N) -> N

Descrição:

Retorna o valor de x / y. A divisão inteira está truncada.

Exemplos:

x y divide(x, y)
20 3 6
10,0 3 3,333...
22,5 2 11,25
10 0 [error]
1.0 0,0 +inf
-1,0 0,0 -inf
Node.js
const result = await db.pipeline()
  .collection("books")
  .select(field("ratings").divide(field("soldBooks")).as("reviewRate"))
  .execute();

Web

const result = await execute(db.pipeline()
  .collection("books")
  .select(field("ratings").divide(field("soldBooks")).as("reviewRate"))
);
Swift
let result = try await db.pipeline()
  .collection("books")
  .select([Field("ratings").divide(Field("soldBooks")).as("reviewRate")])
  .execute()

Kotlin

val result = db.pipeline()
    .collection("books")
    .select(Expression.divide(field("ratings"), field("soldBooks")).alias("reviewRate"))
    .execute()

Java

Task<Pipeline.Snapshot> result = db.pipeline()
    .collection("books")
    .select(Expression.divide(field("ratings"), field("soldBooks")).alias("reviewRate"))
    .execute();
    
Python
from google.cloud.firestore_v1.pipeline_expressions import Field

result = (
    client.pipeline()
    .collection("books")
    .select(Field.of("ratings").divide(Field.of("soldBooks")).as_("reviewRate"))
    .execute()
)
Java
Pipeline.Snapshot result =
    firestore
        .pipeline()
        .collection("books")
        .select(divide(field("ratings"), field("soldBooks")).as("reviewRate"))
        .execute()
        .get();

MOD

Sintaxe:

mod[N <: INT32 | INT64 | FLOAT64](x: N, y: N) -> N

Descrição:

Retorna o restante de x / y.

  • Gera um error quando y é zero para tipos de números inteiros (INT64).
  • Retorna NaN quando y é zero para tipos de ponto flutuante (FLOAT64).

Exemplos:

x y mod(x, y)
20 3 2
-10 3 -1
10 -3 1
-10 -3 -1
10 1 0
22,5 2 0,5
22,5 0,0 NaN
25 0 [error]
Node.js
const displayCapacity = 1000;
const result = await db.pipeline()
  .collection("books")
  .select(field("unsoldBooks").mod(constant(displayCapacity)).as("warehousedBooks"))
  .execute();

Web

const displayCapacity = 1000;
const result = await execute(db.pipeline()
  .collection("books")
  .select(field("unsoldBooks").mod(constant(displayCapacity)).as("warehousedBooks"))
);
Swift
let displayCapacity = 1000
let result = try await db.pipeline()
  .collection("books")
  .select([Field("unsoldBooks").mod(Constant(displayCapacity)).as("warehousedBooks")])
  .execute()

Kotlin

val displayCapacity = 1000
val result = db.pipeline()
    .collection("books")
    .select(Expression.mod(field("unsoldBooks"), displayCapacity).alias("warehousedBooks"))
    .execute()

Java

int displayCapacity = 1000;
Task<Pipeline.Snapshot> result = db.pipeline()
    .collection("books")
    .select(Expression.mod(field("unsoldBooks"), displayCapacity).alias("warehousedBooks"))
    .execute();
    
Python
from google.cloud.firestore_v1.pipeline_expressions import Field

display_capacity = 1000
result = (
    client.pipeline()
    .collection("books")
    .select(Field.of("unsoldBooks").mod(display_capacity).as_("warehousedBooks"))
    .execute()
)
Java
int displayCapacity = 1000;
Pipeline.Snapshot result =
    firestore
        .pipeline()
        .collection("books")
        .select(mod(field("unsoldBooks"), displayCapacity).as("warehousedBooks"))
        .execute()
        .get();

CEIL

Sintaxe:

ceil[N <: INT32 | INT64 | FLOAT64](number: N) -> N

Descrição:

Retorna o menor valor inteiro que não é menor que number.

Exemplos:

número ceil(number)
20 20
10 10
0 0
24L 24L
-0,4 -0,0
0,4 1.0
22,5 23,0
+inf +inf
-inf -inf
Node.js
const booksPerShelf = 100;
const result = await db.pipeline()
  .collection("books")
  .select(
    field("unsoldBooks").divide(constant(booksPerShelf)).ceil().as("requiredShelves")
  )
  .execute();

Web

const booksPerShelf = 100;
const result = await execute(db.pipeline()
  .collection("books")
  .select(
    field("unsoldBooks").divide(constant(booksPerShelf)).ceil().as("requiredShelves")
  )
);
Swift
let booksPerShelf = 100
let result = try await db.pipeline()
  .collection("books")
  .select([
    Field("unsoldBooks").divide(Constant(booksPerShelf)).ceil().as("requiredShelves")
  ])
  .execute()

Kotlin

val booksPerShelf = 100
val result = db.pipeline()
    .collection("books")
    .select(
        Expression.divide(field("unsoldBooks"), booksPerShelf).ceil().alias("requiredShelves")
    )
    .execute()

Java

int booksPerShelf = 100;
Task<Pipeline.Snapshot> result = db.pipeline()
    .collection("books")
    .select(
        Expression.divide(field("unsoldBooks"), booksPerShelf).ceil().alias("requiredShelves")
    )
    .execute();
    
Python
from google.cloud.firestore_v1.pipeline_expressions import Field

books_per_shelf = 100
result = (
    client.pipeline()
    .collection("books")
    .select(
        Field.of("unsoldBooks")
        .divide(books_per_shelf)
        .ceil()
        .as_("requiredShelves")
    )
    .execute()
)
Java
int booksPerShelf = 100;
Pipeline.Snapshot result =
    firestore
        .pipeline()
        .collection("books")
        .select(ceil(divide(field("unsoldBooks"), booksPerShelf)).as("requiredShelves"))
        .execute()
        .get();

FLOOR

Sintaxe:

floor[N <: INT32 | INT64 | FLOAT64](number: N) -> N

Descrição:

Retorna o maior valor inteiro que não é maior que number.

Exemplos:

número floor(number)
20 20
10 10
0 0
2147483648 2147483648
-0,4 -1,0
0,4 0,0
22,5 22,0
+inf +inf
-inf -inf
Node.js
const result = await db.pipeline()
  .collection("books")
  .addFields(
    field("wordCount").divide(field("pages")).floor().as("wordsPerPage")
  )
  .execute();

Web

const result = await execute(db.pipeline()
  .collection("books")
  .addFields(
    field("wordCount").divide(field("pages")).floor().as("wordsPerPage")
  )
);
Swift
let result = try await db.pipeline()
  .collection("books")
  .addFields([
    Field("wordCount").divide(Field("pages")).floor().as("wordsPerPage")
  ])
  .execute()

Kotlin

val result = db.pipeline()
    .collection("books")
    .addFields(
        Expression.divide(field("wordCount"), field("pages")).floor().alias("wordsPerPage")
    )
    .execute()

Java

Task<Pipeline.Snapshot> result = db.pipeline()
    .collection("books")
    .addFields(
        Expression.divide(field("wordCount"), field("pages")).floor().alias("wordsPerPage")
    )
    .execute();
    
Python
from google.cloud.firestore_v1.pipeline_expressions import Field

result = (
    client.pipeline()
    .collection("books")
    .add_fields(
        Field.of("wordCount").divide(Field.of("pages")).floor().as_("wordsPerPage")
    )
    .execute()
)
Java
Pipeline.Snapshot result =
    firestore
        .pipeline()
        .collection("books")
        .addFields(floor(divide(field("wordCount"), field("pages"))).as("wordsPerPage"))
        .execute()
        .get();

ROUND

Sintaxe:

round[N <: INT32 | INT64 | FLOAT64 | DECIMAL128](number: N) -> N
round[N <: INT32 | INT64 | FLOAT64 | DECIMAL128](number: N, places: INT64) -> N

Descrição:

Arredonda places dígitos de um number. Arredonda os dígitos à direita da vírgula decimal se places for positivo e à esquerda se for negativo.

  • Se apenas number for fornecido, o arredondamento será para o valor inteiro mais próximo.
  • Arredonda para longe de zero em casos de metade.
  • Um error será gerado se o arredondamento com um valor places negativo resultar em estouro.

Exemplos:

número casas round(number, places)
15.5 0 16.0
-15,5 0 -16,0
15 1 15
15 0 15
15 -1 20
15 -2 0
15.48924 1 15.5
231-1 -1 [error]
263-1L -1 [error]
Node.js
const result = await db.pipeline()
  .collection("books")
  .select(field("soldBooks").multiply(field("price")).round().as("partialRevenue"))
  .aggregate(field("partialRevenue").sum().as("totalRevenue"))
  .execute();

Web

const result = await execute(db.pipeline()
  .collection("books")
  .select(field("soldBooks").multiply(field("price")).round().as("partialRevenue"))
  .aggregate(field("partialRevenue").sum().as("totalRevenue"))
  );
Swift
let result = try await db.pipeline()
  .collection("books")
  .select([Field("soldBooks").multiply(Field("price")).round().as("partialRevenue")])
  .aggregate([Field("partialRevenue").sum().as("totalRevenue")])
  .execute()

Kotlin

val result = db.pipeline()
    .collection("books")
    .select(Expression.multiply(field("soldBooks"), field("price")).round().alias("partialRevenue"))
    .aggregate(AggregateFunction.sum("partialRevenue").alias("totalRevenue"))
    .execute()

Java

Task<Pipeline.Snapshot> result = db.pipeline()
    .collection("books")
    .select(Expression.multiply(field("soldBooks"), field("price")).round().alias("partialRevenue"))
    .aggregate(AggregateFunction.sum("partialRevenue").alias("totalRevenue"))
    .execute();
    
Python
from google.cloud.firestore_v1.pipeline_expressions import Field

result = (
    client.pipeline()
    .collection("books")
    .select(
        Field.of("soldBooks")
        .multiply(Field.of("price"))
        .round()
        .as_("partialRevenue")
    )
    .aggregate(Field.of("partialRevenue").sum().as_("totalRevenue"))
    .execute()
)
Java
Pipeline.Snapshot result =
    firestore
        .pipeline()
        .collection("books")
        .select(round(multiply(field("soldBooks"), field("price"))).as("partialRevenue"))
        .aggregate(sum("partialRevenue").as("totalRevenue"))
        .execute()
        .get();

POW

Sintaxe:

pow(base: FLOAT64, exponent: FLOAT64) -> FLOAT64

Descrição:

Retorna o valor base elevado à potência de exponent.

  • Gera um erro se base <= 0 e exponent forem negativos.

  • Para qualquer exponent, pow(1, exponent) é 1.

  • Para qualquer base, pow(base, 0) é 1.

Exemplos:

base expoente pow(base, exponent)
2 3 8.0
2 -3 0,125
+inf 0 1.0
1 +inf 1.0
-1 0,5 [error]
0 -1 [error]
Node.js
const googleplex = { latitude: 37.4221, longitude: 122.0853 };
const result = await db.pipeline()
  .collection("cities")
  .addFields(
    field("lat").subtract(constant(googleplex.latitude))
      .multiply(111 /* km per degree */)
      .pow(2)
      .as("latitudeDifference"),
    field("lng").subtract(constant(googleplex.longitude))
      .multiply(111 /* km per degree */)
      .pow(2)
      .as("longitudeDifference")
  )
  .select(
    field("latitudeDifference").add(field("longitudeDifference")).sqrt()
      // Inaccurate for large distances or close to poles
      .as("approximateDistanceToGoogle")
  )
  .execute();

Web

const googleplex = { latitude: 37.4221, longitude: 122.0853 };
const result = await execute(db.pipeline()
  .collection("cities")
  .addFields(
    field("lat").subtract(constant(googleplex.latitude))
      .multiply(111 /* km per degree */)
      .pow(2)
      .as("latitudeDifference"),
    field("lng").subtract(constant(googleplex.longitude))
      .multiply(111 /* km per degree */)
      .pow(2)
      .as("longitudeDifference")
  )
  .select(
    field("latitudeDifference").add(field("longitudeDifference")).sqrt()
      // Inaccurate for large distances or close to poles
      .as("approximateDistanceToGoogle")
  )
);
Swift
let googleplex = CLLocation(latitude: 37.4221, longitude: 122.0853)
let result = try await db.pipeline()
  .collection("cities")
  .addFields([
    Field("lat").subtract(Constant(googleplex.coordinate.latitude))
      .multiply(111 /* km per degree */)
      .pow(2)
      .as("latitudeDifference"),
    Field("lng").subtract(Constant(googleplex.coordinate.latitude))
      .multiply(111 /* km per degree */)
      .pow(2)
      .as("longitudeDifference")
  ])
  .select([
    Field("latitudeDifference").add(Field("longitudeDifference")).sqrt()
      // Inaccurate for large distances or close to poles
      .as("approximateDistanceToGoogle")
  ])
  .execute()

Kotlin

val googleplex = GeoPoint(37.4221, -122.0853)
val result = db.pipeline()
    .collection("cities")
    .addFields(
        field("lat").subtract(googleplex.latitude)
            .multiply(111 /* km per degree */)
            .pow(2)
            .alias("latitudeDifference"),
        field("lng").subtract(googleplex.longitude)
            .multiply(111 /* km per degree */)
            .pow(2)
            .alias("longitudeDifference")
    )
    .select(
        field("latitudeDifference").add(field("longitudeDifference")).sqrt()
            // Inaccurate for large distances or close to poles
            .alias("approximateDistanceToGoogle")
    )
    .execute()

Java

GeoPoint googleplex = new GeoPoint(37.4221, -122.0853);
Task<Pipeline.Snapshot> result = db.pipeline()
    .collection("cities")
    .addFields(
        field("lat").subtract(googleplex.getLatitude())
            .multiply(111 /* km per degree */)
            .pow(2)
            .alias("latitudeDifference"),
        field("lng").subtract(googleplex.getLongitude())
            .multiply(111 /* km per degree */)
            .pow(2)
            .alias("longitudeDifference")
    )
    .select(
        field("latitudeDifference").add(field("longitudeDifference")).sqrt()
            // Inaccurate for large distances or close to poles
            .alias("approximateDistanceToGoogle")
    )
    .execute();
    
Python
from google.cloud.firestore_v1.pipeline_expressions import Field

googleplexLat = 37.4221
googleplexLng = -122.0853
result = (
    client.pipeline()
    .collection("cities")
    .add_fields(
        Field.of("lat")
        .subtract(googleplexLat)
        .multiply(111)  # km per degree
        .pow(2)
        .as_("latitudeDifference"),
        Field.of("lng")
        .subtract(googleplexLng)
        .multiply(111)  # km per degree
        .pow(2)
        .as_("longitudeDifference"),
    )
    .select(
        Field.of("latitudeDifference")
        .add(Field.of("longitudeDifference"))
        .sqrt()
        # Inaccurate for large distances or close to poles
        .as_("approximateDistanceToGoogle")
    )
    .execute()
)
Java
double googleplexLat = 37.4221;
double googleplexLng = -122.0853;
Pipeline.Snapshot result =
    firestore
        .pipeline()
        .collection("cities")
        .addFields(
            pow(multiply(subtract(field("lat"), googleplexLat), 111), 2)
                .as("latitudeDifference"),
            pow(multiply(subtract(field("lng"), googleplexLng), 111), 2)
                .as("longitudeDifference"))
        .select(
            sqrt(add(field("latitudeDifference"), field("longitudeDifference")))
                // Inaccurate for large distances or close to poles
                .as("approximateDistanceToGoogle"))
        .execute()
        .get();

SQRT

Sintaxe:

sqrt[N <: FLOAT64 | DECIMAL128](number: N) -> N

Descrição:

Retorna a raiz quadrada de um number.

  • Gera um error se number for negativo.

Exemplos:

número sqrt(number)
25 5.0
12,002 3,464...
0,0 0,0
NaN NaN
+inf +inf
-inf [error]
x < 0 [error]
Node.js
const googleplex = { latitude: 37.4221, longitude: 122.0853 };
const result = await db.pipeline()
  .collection("cities")
  .addFields(
    field("lat").subtract(constant(googleplex.latitude))
      .multiply(111 /* km per degree */)
      .pow(2)
      .as("latitudeDifference"),
    field("lng").subtract(constant(googleplex.longitude))
      .multiply(111 /* km per degree */)
      .pow(2)
      .as("longitudeDifference")
  )
  .select(
    field("latitudeDifference").add(field("longitudeDifference")).sqrt()
      // Inaccurate for large distances or close to poles
      .as("approximateDistanceToGoogle")
  )
  .execute();

Web

const googleplex = { latitude: 37.4221, longitude: 122.0853 };
const result = await execute(db.pipeline()
  .collection("cities")
  .addFields(
    field("lat").subtract(constant(googleplex.latitude))
      .multiply(111 /* km per degree */)
      .pow(2)
      .as("latitudeDifference"),
    field("lng").subtract(constant(googleplex.longitude))
      .multiply(111 /* km per degree */)
      .pow(2)
      .as("longitudeDifference")
  )
  .select(
    field("latitudeDifference").add(field("longitudeDifference")).sqrt()
      // Inaccurate for large distances or close to poles
      .as("approximateDistanceToGoogle")
  )
);
Swift
let googleplex = CLLocation(latitude: 37.4221, longitude: 122.0853)
let result = try await db.pipeline()
  .collection("cities")
  .addFields([
    Field("lat").subtract(Constant(googleplex.coordinate.latitude))
      .multiply(111 /* km per degree */)
      .pow(2)
      .as("latitudeDifference"),
    Field("lng").subtract(Constant(googleplex.coordinate.latitude))
      .multiply(111 /* km per degree */)
      .pow(2)
      .as("longitudeDifference")
  ])
  .select([
    Field("latitudeDifference").add(Field("longitudeDifference")).sqrt()
      // Inaccurate for large distances or close to poles
      .as("approximateDistanceToGoogle")
  ])
  .execute()

Kotlin

val googleplex = GeoPoint(37.4221, -122.0853)
val result = db.pipeline()
    .collection("cities")
    .addFields(
        field("lat").subtract(googleplex.latitude)
            .multiply(111 /* km per degree */)
            .pow(2)
            .alias("latitudeDifference"),
        field("lng").subtract(googleplex.longitude)
            .multiply(111 /* km per degree */)
            .pow(2)
            .alias("longitudeDifference")
    )
    .select(
        field("latitudeDifference").add(field("longitudeDifference")).sqrt()
            // Inaccurate for large distances or close to poles
            .alias("approximateDistanceToGoogle")
    )
    .execute()

Java

GeoPoint googleplex = new GeoPoint(37.4221, -122.0853);
Task<Pipeline.Snapshot> result = db.pipeline()
    .collection("cities")
    .addFields(
        field("lat").subtract(googleplex.getLatitude())
            .multiply(111 /* km per degree */)
            .pow(2)
            .alias("latitudeDifference"),
        field("lng").subtract(googleplex.getLongitude())
            .multiply(111 /* km per degree */)
            .pow(2)
            .alias("longitudeDifference")
    )
    .select(
        field("latitudeDifference").add(field("longitudeDifference")).sqrt()
            // Inaccurate for large distances or close to poles
            .alias("approximateDistanceToGoogle")
    )
    .execute();
    
Python
from google.cloud.firestore_v1.pipeline_expressions import Field

googleplexLat = 37.4221
googleplexLng = -122.0853
result = (
    client.pipeline()
    .collection("cities")
    .add_fields(
        Field.of("lat")
        .subtract(googleplexLat)
        .multiply(111)  # km per degree
        .pow(2)
        .as_("latitudeDifference"),
        Field.of("lng")
        .subtract(googleplexLng)
        .multiply(111)  # km per degree
        .pow(2)
        .as_("longitudeDifference"),
    )
    .select(
        Field.of("latitudeDifference")
        .add(Field.of("longitudeDifference"))
        .sqrt()
        # Inaccurate for large distances or close to poles
        .as_("approximateDistanceToGoogle")
    )
    .execute()
)
Java
double googleplexLat = 37.4221;
double googleplexLng = -122.0853;
Pipeline.Snapshot result =
    firestore
        .pipeline()
        .collection("cities")
        .addFields(
            pow(multiply(subtract(field("lat"), googleplexLat), 111), 2)
                .as("latitudeDifference"),
            pow(multiply(subtract(field("lng"), googleplexLng), 111), 2)
                .as("longitudeDifference"))
        .select(
            sqrt(add(field("latitudeDifference"), field("longitudeDifference")))
                // Inaccurate for large distances or close to poles
                .as("approximateDistanceToGoogle"))
        .execute()
        .get();

EXP

Sintaxe:

exp(exponent: FLOAT64) -> FLOAT64

Descrição:

Retorna o valor do número de Euler elevado à potência de exponent, também chamada de função exponencial natural.

Exemplos:

expoente exp(exponent)
0,0 1.0
10 e^10 (FLOAT64)
+inf +inf
-inf 0
Node.js
const result = await db.pipeline()
  .collection("books")
  .select(field("rating").exp().as("expRating"))
  .execute();

Web

const result = await execute(db.pipeline()
  .collection("books")
  .select(field("rating").exp().as("expRating"))
);
Swift
let result = try await db.pipeline()
  .collection("books")
  .select([Field("rating").exp().as("expRating")])
  .execute()

Kotlin

val result = db.pipeline()
    .collection("books")
    .select(field("rating").exp().alias("expRating"))
    .execute()

Java

Task<Pipeline.Snapshot> result = db.pipeline()
    .collection("books")
    .select(field("rating").exp().alias("expRating"))
    .execute();
    
Python
from google.cloud.firestore_v1.pipeline_expressions import Field

result = (
    client.pipeline()
    .collection("books")
    .select(Field.of("rating").exp().as_("expRating"))
    .execute()
)
Java
Pipeline.Snapshot result =
    firestore
        .pipeline()
        .collection("books")
        .select(exp(field("rating")).as("expRating"))
        .execute()
        .get();

LN

Sintaxe:

ln(number: FLOAT64) -> FLOAT64

Descrição:

Retorna o logaritmo natural de number. Esta função é equivalente a log(number).

Exemplos:

número ln(number)
1 0,0
2L 0,693...
1.0 0,0
e (FLOAT64) 1.0
-inf NaN
+inf +inf
x <= 0 [error]
Node.js
const result = await db.pipeline()
  .collection("books")
  .select(field("rating").ln().as("lnRating"))
  .execute();

Web

const result = await execute(db.pipeline()
  .collection("books")
  .select(field("rating").ln().as("lnRating"))
);
Swift
let result = try await db.pipeline()
  .collection("books")
  .select([Field("rating").ln().as("lnRating")])
  .execute()

Kotlin

val result = db.pipeline()
    .collection("books")
    .select(field("rating").ln().alias("lnRating"))
    .execute()

Java

Task<Pipeline.Snapshot> result = db.pipeline()
    .collection("books")
    .select(field("rating").ln().alias("lnRating"))
    .execute();
    
Python
from google.cloud.firestore_v1.pipeline_expressions import Field

result = (
    client.pipeline()
    .collection("books")
    .select(Field.of("rating").ln().as_("lnRating"))
    .execute()
)
Java
Pipeline.Snapshot result =
    firestore
        .pipeline()
        .collection("books")
        .select(ln(field("rating")).as("lnRating"))
        .execute()
        .get();

LOG

Sintaxe:

log(number: FLOAT64, base: FLOAT64) -> FLOAT64
log(number: FLOAT64) -> FLOAT64

Descrição:

Retorna o logaritmo de number para base.

  • Se apenas number for fornecido, vai retornar o logaritmo de number para base (sinônimo de ln(number)).

Exemplos:

número base log(number, base)
100 10 2,0
-inf Numeric NaN
Numeric. +inf NaN
number <= 0 Numeric [error]
Numeric base <= 0 [error]
Numeric 1.0 [error]

LOG10

Sintaxe:

log10(x: FLOAT64) -> FLOAT64

Descrição:

Retorna o logaritmo de number na base 10.

Exemplos:

número log10(number)
100 2,0
-inf NaN
+inf +inf
x <= 0 [error]

RAND

Sintaxe:

rand() -> FLOAT64

Descrição:

Retorna um número de ponto flutuante pseudorrandômico, escolhido uniformemente entre 0.0 (inclusivo) e 1.0 (exclusivo).