앱에서 Google Cloud API를 호출하려면 승인을 처리하고 API 키와 같은 보안 비밀 값을 보호하는 중간 REST API를 만들어야 합니다. 그런 다음 모바일 앱에서 코드를 작성하여 이 중간 서비스에 인증하고 통신해야 합니다.
이 REST API를 만드는 한 가지 방법은 Firebase 인증 및 Firebase Functions를 사용하는 것입니다. 이 방법을 사용하면 인증을 처리하고 사전 빌드된 SDK를 사용하여 모바일 앱에서 호출할 수 있는 Google Cloud API에 대한 관리형 서버리스 게이트웨이가 제공됩니다.
이 가이드에서는 이 기법을 사용하여 앱에서 Cloud Vision API를 호출하는 방법을 설명합니다. 이 방법을 사용하면 인증된 모든 사용자가 Cloud 프로젝트를 통해 Cloud Vision 청구 서비스에 액세스할 수 있으므로 계속하기 전에 이 인증 메커니즘이 현재 사용 사례에 충분한지 고려해야 합니다.
시작하기 전에
프로젝트 구성
앱에 Firebase를 아직 추가하지 않았다면 시작 가이드의 단계에 따라 추가합니다.Swift Package Manager를 사용해 Firebase 종속 항목을 설치하고 관리하세요.
- 앱 프로젝트를 연 상태로 Xcode에서 File(파일) > Add Packages(패키지 추가)로 이동합니다.
- 메시지가 표시되면 Firebase Apple 플랫폼 SDK 저장소를 추가합니다.
- Firebase ML 라이브러리를 선택합니다.
- 타겟 빌드 설정의 Other Linker Flags(기타 링커 플래그) 섹션에
-ObjC
플래그를 추가합니다. - 완료되면 Xcode가 백그라운드에서 자동으로 종속 항목을 확인하고 다운로드하기 시작합니다.
https://github.com/firebase/firebase-ios-sdk.git
그런 다음 몇 가지 인앱 설정을 수행합니다.
- 앱에서 Firebase를 가져옵니다.
Swift
import FirebaseMLModelDownloader
Objective-C
@import FirebaseMLModelDownloader;
이제 몇 가지 추가 구성 단계를 거치면 시작할 준비를 마치게 됩니다.
-
프로젝트에 클라우드 기반 API를 아직 사용 설정하지 않았으면 지금 설정하세요.
- Firebase Console의 Firebase ML API 페이지를 엽니다.
-
프로젝트를 Blaze 요금제로 아직 업그레이드하지 않은 경우 업그레이드를 클릭하여 업그레이드하세요. 프로젝트가 Blaze 요금제가 아닌 경우에만 업그레이드하라는 메시지가 표시됩니다.
Blaze 수준 프로젝트만 클라우드 기반 API를 사용할 수 있습니다.
- 클라우드 기반 API가 아직 사용 설정되지 않은 경우 클라우드 기반 API 사용 설정을 클릭합니다.
- Cloud Vision API에 대한 액세스를 허용하지 않도록 기존 Firebase API 키를 구성합니다.
- Cloud 콘솔의 사용자 인증 정보 페이지를 엽니다.
- 목록에 있는 API 키마다 편집 화면을 열고 키 제한 섹션에서 Cloud Vision API를 제외한 모든 사용 가능한 API를 목록에 추가합니다.
호출 가능 함수 배포
다음으로 앱과 Cloud Vision API를 연결하는 데 사용할 Cloud 함수를 배포합니다. functions-samples
저장소에는 사용할 수 있는 예시가 포함되어 있습니다.
기본적으로 이 함수를 통해 Cloud Vision API에 액세스하면 앱의 인증된 사용자만 Cloud Vision API에 액세스할 수 있습니다. 다양한 요구사항에 맞게 함수를 수정할 수 있습니다.
함수 배포 단계는 다음과 같습니다.
- functions-samples repo를 클론하거나 다운로드하고
Node-1st-gen/vision-annotate-image
디렉터리로 변경합니다.git clone https://github.com/firebase/functions-samples
cd Node-1st-gen/vision-annotate-image
- 종속 항목을 설치합니다.
cd functions
npm install
cd ..
- Firebase CLI가 없으면 설치합니다.
vision-annotate-image
디렉터리에서 Firebase 프로젝트를 초기화합니다. 메시지가 표시되면 목록에서 프로젝트를 선택합니다.firebase init
- 함수를 배포합니다.
firebase deploy --only functions:annotateImage
앱에 Firebase 인증 추가
위에서 배포한 호출 가능 함수는 인증되지 않은 앱 사용자의 모든 요청을 거부합니다. 아직 추가하지 않았다면 Firebase 인증을 앱에 추가해야 합니다.
앱에 필요한 종속 항목 추가
Swift Package Manager를 사용해 Firebase용 Cloud Functions 라이브러리를 설치합니다.
1. 입력 이미지 준비
Cloud Vision을 호출하려면 이미지의 형식을 base64로 인코딩된 문자열로 지정해야 합니다.UIImage
를 처리하려면 다음 안내를 따르세요.
Swift
guard let imageData = uiImage.jpegData(compressionQuality: 1.0) else { return } let base64encodedImage = imageData.base64EncodedString()
Objective-C
NSData *imageData = UIImageJPEGRepresentation(uiImage, 1.0f); NSString *base64encodedImage = [imageData base64EncodedStringWithOptions:NSDataBase64Encoding76CharacterLineLength];
2. 호출 가능 함수를 호출하여 랜드마크 인식
이미지 속 랜드마크를 인식하려면 JSON Cloud Vision 요청을 전달하는 호출 가능 함수를 호출합니다.먼저 Cloud Functions의 인스턴스를 초기화합니다.
Swift
lazy var functions = Functions.functions()
Objective-C
@property(strong, nonatomic) FIRFunctions *functions;
유형을
LANDMARK_DETECTION
으로 설정하여 요청을 만듭니다.Swift
let requestData = [ "image": ["content": base64encodedImage], "features": ["maxResults": 5, "type": "LANDMARK_DETECTION"] ]
Objective-C
NSDictionary *requestData = @{ @"image": @{@"content": base64encodedImage}, @"features": @{@"maxResults": @5, @"type": @"LANDMARK_DETECTION"} };
마지막으로 함수를 호출합니다.
Swift
do { let result = try await functions.httpsCallable("annotateImage").call(requestData) print(result) } catch { if let error = error as NSError? { if error.domain == FunctionsErrorDomain { let code = FunctionsErrorCode(rawValue: error.code) let message = error.localizedDescription let details = error.userInfo[FunctionsErrorDetailsKey] } // ... } }
Objective-C
[[_functions HTTPSCallableWithName:@"annotateImage"] callWithObject:requestData completion:^(FIRHTTPSCallableResult * _Nullable result, NSError * _Nullable error) { if (error) { if ([error.domain isEqualToString:@"com.firebase.functions"]) { FIRFunctionsErrorCode code = error.code; NSString *message = error.localizedDescription; NSObject *details = error.userInfo[@"details"]; } // ... } // Function completed succesfully // Get information about labeled objects }];
3. 인식된 랜드마크 정보 가져오기
랜드마크 인식 작업이 성공하면 BatchAnnotateImagesResponse의 JSON 응답이 작업 결과에 반환됩니다. landmarkAnnotations
배열의 각 객체는 이미지에서 인식된 랜드마크를 나타냅니다. 랜드마크별로 입력 이미지의 경계 좌표, 랜드마크의 이름, 위도 및 경도, 지식 그래프 항목 ID(해당하는 경우), 일치 신뢰도 점수를 가져올 수 있습니다.
예를 들면 다음과 같습니다.
Swift
if let labelArray = (result?.data as? [String: Any])?["landmarkAnnotations"] as? [[String:Any]] {
for labelObj in labelArray {
let landmarkName = labelObj["description"]
let entityId = labelObj["mid"]
let score = labelObj["score"]
let bounds = labelObj["boundingPoly"]
// Multiple locations are possible, e.g., the location of the depicted
// landmark and the location the picture was taken.
guard let locations = labelObj["locations"] as? [[String: [String: Any]]] else { continue }
for location in locations {
let latitude = location["latLng"]?["latitude"]
let longitude = location["latLng"]?["longitude"]
}
}
}
Objective-C
NSArray *labelArray = result.data[@"landmarkAnnotations"];
for (NSDictionary *labelObj in labelArray) {
NSString *landmarkName = labelObj[@"description"];
NSString *entityId = labelObj[@"mid"];
NSNumber *score = labelObj[@"score"];
NSArray *bounds = labelObj[@"boundingPoly"];
// Multiple locations are possible, e.g., the location of the depicted
// landmark and the location the picture was taken.
NSArray *locations = labelObj[@"locations"];
for (NSDictionary *location in locations) {
NSNumber *latitude = location[@"latLng"][@"latitude"];
NSNumber *longitude = location[@"latLng"][@"longitude"];
}
}