Android पर Firebase की पुष्टि और फ़ंक्शन का इस्तेमाल करके, Cloud Vision की मदद से इमेज में मौजूद टेक्स्ट की पहचान करें

अपने ऐप्लिकेशन से Google Cloud API को कॉल करने के लिए, आपको एक इंटरमीडिएट बनाना होगा REST API, जो अनुमति देने को मैनेज करती है और एपीआई पासकोड जैसी सीक्रेट वैल्यू को सुरक्षित करती है. इसके बाद, आपको यह करना होगा इस बीच के लेवल पर मिलने वाली सेवा की पुष्टि करने और इससे संपर्क करने के लिए, अपने मोबाइल ऐप्लिकेशन में कोड लिखें.

इस REST API को बनाने का एक तरीका है, Firebase से पुष्टि और फ़ंक्शन का इस्तेमाल करना. इससे आपको मैनेज किया जा रहा बिना सर्वर वाला गेटवे मिलता है ऐसे Google Cloud API जो पुष्टि करने का काम संभालते हैं और जिन्हें आपके मोबाइल ऐप्लिकेशन से कॉल किया जा सकता है पहले से बने SDK टूल.

इस गाइड में, अपने ऐप्लिकेशन से Cloud Vision API को कॉल करने के लिए, इस तकनीक का इस्तेमाल करने का तरीका बताया गया है. इस तरीके से, पुष्टि किए गए सभी उपयोगकर्ता आपके Cloud प्रोजेक्ट के ज़रिए Cloud Vision की बिलिंग सेवाओं को ऐक्सेस कर पाएंगे. इसलिए, आगे बढ़ने से पहले देखें कि पुष्टि करने का यह तरीका आपके इस्तेमाल के उदाहरण के लिए काफ़ी है या नहीं.

शुरू करने से पहले

अपना प्रोजेक्ट कॉन्फ़िगर करना

  1. अगर आपने अब तक ऐसा नहीं किया है, तो अपने Android प्रोजेक्ट में Firebase जोड़ें.
  2. अगर आपने अपने प्रोजेक्ट के लिए पहले से क्लाउड-आधारित एपीआई चालू नहीं किए हैं, तो ऐसा करें अब:

    1. Firebase ML खोलें Firebase कंसोल का एपीआई पेज.
    2. अगर आपने पहले से अपने प्रोजेक्ट को Blaze प्राइसिंग प्लान में अपग्रेड नहीं किया है, तो ऐसा करने के लिए अपग्रेड करें. (आपको अपग्रेड करने के लिए तभी कहा जाएगा, जब प्रोजेक्ट ब्लेज़ प्लान में नहीं है.)

      सिर्फ़ ब्लेज़-लेवल के प्रोजेक्ट ही क्लाउड-आधारित एपीआई का इस्तेमाल कर सकते हैं.

    3. अगर क्लाउड-आधारित एपीआई पहले से चालू नहीं हैं, तो क्लाउड-आधारित एपीआई चालू करें APIs.
  3. क्लाउड का ऐक्सेस न देने के लिए, अपनी मौजूदा Firebase API कुंजियां कॉन्फ़िगर करें Vision API:
    1. Cloud Console का क्रेडेंशियल पेज खोलें.
    2. सूची में मौजूद हर एपीआई पासकोड के लिए, एडिटिंग व्यू खोलें और कुंजी पाबंदियों वाला सेक्शन, Cloud विज़न के अलावा सभी उपलब्ध एपीआई जोड़ें एपीआई को सूची में जोड़ें.

कॉल करने लायक फ़ंक्शन को डिप्लॉय करें

इसके बाद, अपने ऐप्लिकेशन और क्लाउड को जोड़ने के लिए इस्तेमाल किया जाने वाला Cloud फ़ंक्शन डिप्लॉय करें Vision API. functions-samples डेटा संग्रह स्थान में इसका एक उदाहरण है तो ये तरीके़ इस्तेमाल किए जा सकते हैं.

डिफ़ॉल्ट रूप से, इस फ़ंक्शन से Cloud Vision API को ऐक्सेस करने पर, आपके ऐप्लिकेशन के पुष्टि किए गए उपयोगकर्ता ही Cloud Vision API को ऐक्सेस कर पाएंगे. आप अलग-अलग ज़रूरतों के हिसाब से फ़ंक्शन में बदलाव करें.

फ़ंक्शन को डिप्लॉय करने के लिए:

  1. फ़ंक्शन-सैंपल रेपो का क्लोन बनाएं या उसे डाउनलोड करें और Node-1st-gen/vision-annotate-image डायरेक्ट्री में बदलें:
    git clone https://github.com/firebase/functions-samples
    cd Node-1st-gen/vision-annotate-image
    
  2. डिपेंडेंसी इंस्टॉल करें:
    cd functions
    npm install
    cd ..
    
    अभी तक किसी भी व्यक्ति ने चेक इन नहीं किया है
  3. अगर आपके पास Firebase सीएलआई नहीं है, तो उसे इंस्टॉल करें.
  4. vision-annotate-image में Firebase प्रोजेक्ट शुरू करें डायरेक्ट्री. जब कहा जाए, तब सूची में से अपना प्रोजेक्ट चुनें.
    firebase init
  5. यह फ़ंक्शन डिप्लॉय करें:
    firebase deploy --only functions:annotateImage

अपने ऐप्लिकेशन में Firebase पुष्टि करने की सुविधा जोड़ें

ऊपर डिप्लॉय किया गया कॉल करने लायक फ़ंक्शन, पुष्टि नहीं किए गए किसी भी अनुरोध को अस्वीकार कर देगा आपके ऐप्लिकेशन के उपयोगकर्ता. अगर आपने पहले से ऐसा नहीं किया है, तो आपको Firebase जोड़ना होगा अपने ऐप्लिकेशन को अनुमति देना.

अपने ऐप्लिकेशन में ज़रूरी डिपेंडेंसी जोड़ें

  • 'Firebase के लिए Cloud Functions' (क्लाइंट) और gson Android लाइब्रेरी के लिए डिपेंडेंसी जोड़ें मॉड्यूल (ऐप्लिकेशन-लेवल) की Gradle फ़ाइल में (आम तौर पर <project>/<app-module>/build.gradle.kts या <project>/<app-module>/build.gradle):
    implementation("com.google.firebase:firebase-functions:21.0.0")
    implementation("com.google.code.gson:gson:2.8.6")
  • अब आप इमेज में मौजूद टेक्स्ट की पहचान करने के लिए तैयार हैं.

    1. इनपुट इमेज तैयार करें

    Cloud Vision को कॉल करने के लिए, इमेज को base64 कोड में बदली गई स्ट्रिंग के तौर पर फ़ॉर्मैट किया जाना चाहिए. किसी प्रोसेस को आगे बढ़ाने के लिए, सेव की गई फ़ाइल के यूआरआई से इमेज:
    1. इमेज को Bitmap ऑब्जेक्ट के तौर पर पाएं:

      Kotlin+KTX

      var bitmap: Bitmap = MediaStore.Images.Media.getBitmap(contentResolver, uri)
      

      Java

      Bitmap bitmap = MediaStore.Images.Media.getBitmap(getContentResolver(), uri);
    2. वैकल्पिक रूप से, बैंडविड्थ पर बचत करने के लिए इमेज को छोटा करें. Cloud विज़न के लिए, सुझाए गए इमेज साइज़.

      Kotlin+KTX

      private fun scaleBitmapDown(bitmap: Bitmap, maxDimension: Int): Bitmap {
          val originalWidth = bitmap.width
          val originalHeight = bitmap.height
          var resizedWidth = maxDimension
          var resizedHeight = maxDimension
          if (originalHeight > originalWidth) {
              resizedHeight = maxDimension
              resizedWidth =
                  (resizedHeight * originalWidth.toFloat() / originalHeight.toFloat()).toInt()
          } else if (originalWidth > originalHeight) {
              resizedWidth = maxDimension
              resizedHeight =
                  (resizedWidth * originalHeight.toFloat() / originalWidth.toFloat()).toInt()
          } else if (originalHeight == originalWidth) {
              resizedHeight = maxDimension
              resizedWidth = maxDimension
          }
          return Bitmap.createScaledBitmap(bitmap, resizedWidth, resizedHeight, false)
      }

      Java

      private Bitmap scaleBitmapDown(Bitmap bitmap, int maxDimension) {
          int originalWidth = bitmap.getWidth();
          int originalHeight = bitmap.getHeight();
          int resizedWidth = maxDimension;
          int resizedHeight = maxDimension;
      
          if (originalHeight > originalWidth) {
              resizedHeight = maxDimension;
              resizedWidth = (int) (resizedHeight * (float) originalWidth / (float) originalHeight);
          } else if (originalWidth > originalHeight) {
              resizedWidth = maxDimension;
              resizedHeight = (int) (resizedWidth * (float) originalHeight / (float) originalWidth);
          } else if (originalHeight == originalWidth) {
              resizedHeight = maxDimension;
              resizedWidth = maxDimension;
          }
          return Bitmap.createScaledBitmap(bitmap, resizedWidth, resizedHeight, false);
      }

      Kotlin+KTX

      // Scale down bitmap size
      bitmap = scaleBitmapDown(bitmap, 640)

      Java

      // Scale down bitmap size
      bitmap = scaleBitmapDown(bitmap, 640);
    3. बिटमैप ऑब्जेक्ट को base64 कोड में बदली गई स्ट्रिंग में बदलें:

      Kotlin+KTX

      // Convert bitmap to base64 encoded string
      val byteArrayOutputStream = ByteArrayOutputStream()
      bitmap.compress(Bitmap.CompressFormat.JPEG, 100, byteArrayOutputStream)
      val imageBytes: ByteArray = byteArrayOutputStream.toByteArray()
      val base64encoded = Base64.encodeToString(imageBytes, Base64.NO_WRAP)

      Java

      // Convert bitmap to base64 encoded string
      ByteArrayOutputStream byteArrayOutputStream = new ByteArrayOutputStream();
      bitmap.compress(Bitmap.CompressFormat.JPEG, 100, byteArrayOutputStream);
      byte[] imageBytes = byteArrayOutputStream.toByteArray();
      String base64encoded = Base64.encodeToString(imageBytes, Base64.NO_WRAP);
    4. Bitmap ऑब्जेक्ट के ज़रिए दिखाई जाने वाली इमेज में सीधा होना चाहिए, इसके लिए किसी अतिरिक्त रोटेशन की आवश्यकता नहीं होगी.

    2. टेक्स्ट की पहचान करने के लिए, कॉल किए जा सकने वाले फ़ंक्शन को शुरू करें

    किसी इमेज में टेक्स्ट की पहचान करने के लिए, कॉल करने लायक फ़ंक्शन को शुरू करें और JSON Cloud विज़न अनुरोध.

    1. सबसे पहले, Cloud Functions के इंस्टेंस को शुरू करें:

      Kotlin+KTX

      private lateinit var functions: FirebaseFunctions
      // ...
      functions = Firebase.functions
      

      Java

      private FirebaseFunctions mFunctions;
      // ...
      mFunctions = FirebaseFunctions.getInstance();
      
    2. फ़ंक्शन शुरू करने का तरीका तय करें:

      Kotlin+KTX

      private fun annotateImage(requestJson: String): Task<JsonElement> {
          return functions
              .getHttpsCallable("annotateImage")
              .call(requestJson)
              .continueWith { task ->
                  // This continuation runs on either success or failure, but if the task
                  // has failed then result will throw an Exception which will be
                  // propagated down.
                  val result = task.result?.data
                  JsonParser.parseString(Gson().toJson(result))
              }
      }
      

      Java

      private Task<JsonElement> annotateImage(String requestJson) {
          return mFunctions
                  .getHttpsCallable("annotateImage")
                  .call(requestJson)
                  .continueWith(new Continuation<HttpsCallableResult, JsonElement>() {
                      @Override
                      public JsonElement then(@NonNull Task<HttpsCallableResult> task) {
                          // This continuation runs on either success or failure, but if the task
                          // has failed then getResult() will throw an Exception which will be
                          // propagated down.
                          return JsonParser.parseString(new Gson().toJson(task.getResult().getData()));
                      }
                  });
      }
      
    3. JSON का अनुरोध करें. Cloud Vision API दो टाइप के साथ काम करता है टेक्स्ट डिटेक्शन का प्रतिशत: TEXT_DETECTION और DOCUMENT_TEXT_DETECTION. Cloud Vision OCR दस्तावेज़ देखें डालें.

      Kotlin+KTX

      // Create json request to cloud vision
      val request = JsonObject()
      // Add image to request
      val image = JsonObject()
      image.add("content", JsonPrimitive(base64encoded))
      request.add("image", image)
      // Add features to the request
      val feature = JsonObject()
      feature.add("type", JsonPrimitive("TEXT_DETECTION"))
      // Alternatively, for DOCUMENT_TEXT_DETECTION:
      // feature.add("type", JsonPrimitive("DOCUMENT_TEXT_DETECTION"))
      val features = JsonArray()
      features.add(feature)
      request.add("features", features)
      

      Java

      // Create json request to cloud vision
      JsonObject request = new JsonObject();
      // Add image to request
      JsonObject image = new JsonObject();
      image.add("content", new JsonPrimitive(base64encoded));
      request.add("image", image);
      //Add features to the request
      JsonObject feature = new JsonObject();
      feature.add("type", new JsonPrimitive("TEXT_DETECTION"));
      // Alternatively, for DOCUMENT_TEXT_DETECTION:
      //feature.add("type", new JsonPrimitive("DOCUMENT_TEXT_DETECTION"));
      JsonArray features = new JsonArray();
      features.add(feature);
      request.add("features", features);
      

      विकल्प के तौर पर, भाषा की जानकारी दें भाषा का पता लगाने में मदद करने के लिए (इस्तेमाल की जा सकने वाली भाषाएं देखें):

      Kotlin+KTX

      val imageContext = JsonObject()
      val languageHints = JsonArray()
      languageHints.add("en")
      imageContext.add("languageHints", languageHints)
      request.add("imageContext", imageContext)
      

      Java

      JsonObject imageContext = new JsonObject();
      JsonArray languageHints = new JsonArray();
      languageHints.add("en");
      imageContext.add("languageHints", languageHints);
      request.add("imageContext", imageContext);
      
    4. आखिर में, फ़ंक्शन शुरू करें:

      Kotlin+KTX

      annotateImage(request.toString())
          .addOnCompleteListener { task ->
              if (!task.isSuccessful) {
                  // Task failed with an exception
                  // ...
              } else {
                  // Task completed successfully
                  // ...
              }
          }
      

      Java

      annotateImage(request.toString())
              .addOnCompleteListener(new OnCompleteListener<JsonElement>() {
                  @Override
                  public void onComplete(@NonNull Task<JsonElement> task) {
                      if (!task.isSuccessful()) {
                          // Task failed with an exception
                          // ...
                      } else {
                          // Task completed successfully
                          // ...
                      }
                  }
              });
      

    3. पहचाने गए टेक्स्ट के ब्लॉक से टेक्स्ट निकालें

    अगर लेख पहचान कार्रवाई सफल होती है, तो एक JSON जवाब BatchAnnotateImageResponse को टास्क के नतीजे में दिखाया जाएगा. टेक्स्ट की व्याख्या यहां दी गई है: fullTextAnnotation ऑब्जेक्ट.

    आपको text फ़ील्ड में, पहचाना गया टेक्स्ट स्ट्रिंग के रूप में मिल सकता है. उदाहरण के लिए:

    Kotlin+KTX

    val annotation = task.result!!.asJsonArray[0].asJsonObject["fullTextAnnotation"].asJsonObject
    System.out.format("%nComplete annotation:")
    System.out.format("%n%s", annotation["text"].asString)
    

    Java

    JsonObject annotation = task.getResult().getAsJsonArray().get(0).getAsJsonObject().get("fullTextAnnotation").getAsJsonObject();
    System.out.format("%nComplete annotation:%n");
    System.out.format("%s%n", annotation.get("text").getAsString());
    

    आपको इमेज के अलग-अलग क्षेत्रों के हिसाब से जानकारी भी मिल सकती है. हर block के लिए, paragraph, word, और symbol, इस क्षेत्र में टेक्स्ट की पहचान की जा सकती है और क्षेत्र की सीमा तय करने वाले निर्देशांक. उदाहरण के लिए:

    Kotlin+KTX

    for (page in annotation["pages"].asJsonArray) {
        var pageText = ""
        for (block in page.asJsonObject["blocks"].asJsonArray) {
            var blockText = ""
            for (para in block.asJsonObject["paragraphs"].asJsonArray) {
                var paraText = ""
                for (word in para.asJsonObject["words"].asJsonArray) {
                    var wordText = ""
                    for (symbol in word.asJsonObject["symbols"].asJsonArray) {
                        wordText += symbol.asJsonObject["text"].asString
                        System.out.format(
                            "Symbol text: %s (confidence: %f)%n",
                            symbol.asJsonObject["text"].asString,
                            symbol.asJsonObject["confidence"].asFloat,
                        )
                    }
                    System.out.format(
                        "Word text: %s (confidence: %f)%n%n",
                        wordText,
                        word.asJsonObject["confidence"].asFloat,
                    )
                    System.out.format("Word bounding box: %s%n", word.asJsonObject["boundingBox"])
                    paraText = String.format("%s%s ", paraText, wordText)
                }
                System.out.format("%nParagraph: %n%s%n", paraText)
                System.out.format("Paragraph bounding box: %s%n", para.asJsonObject["boundingBox"])
                System.out.format("Paragraph Confidence: %f%n", para.asJsonObject["confidence"].asFloat)
                blockText += paraText
            }
            pageText += blockText
        }
    }
    

    Java

    for (JsonElement page : annotation.get("pages").getAsJsonArray()) {
        StringBuilder pageText = new StringBuilder();
        for (JsonElement block : page.getAsJsonObject().get("blocks").getAsJsonArray()) {
            StringBuilder blockText = new StringBuilder();
            for (JsonElement para : block.getAsJsonObject().get("paragraphs").getAsJsonArray()) {
                StringBuilder paraText = new StringBuilder();
                for (JsonElement word : para.getAsJsonObject().get("words").getAsJsonArray()) {
                    StringBuilder wordText = new StringBuilder();
                    for (JsonElement symbol : word.getAsJsonObject().get("symbols").getAsJsonArray()) {
                        wordText.append(symbol.getAsJsonObject().get("text").getAsString());
                        System.out.format("Symbol text: %s (confidence: %f)%n", symbol.getAsJsonObject().get("text").getAsString(), symbol.getAsJsonObject().get("confidence").getAsFloat());
                    }
                    System.out.format("Word text: %s (confidence: %f)%n%n", wordText.toString(), word.getAsJsonObject().get("confidence").getAsFloat());
                    System.out.format("Word bounding box: %s%n", word.getAsJsonObject().get("boundingBox"));
                    paraText.append(wordText.toString()).append(" ");
                }
                System.out.format("%nParagraph:%n%s%n", paraText);
                System.out.format("Paragraph bounding box: %s%n", para.getAsJsonObject().get("boundingBox"));
                System.out.format("Paragraph Confidence: %f%n", para.getAsJsonObject().get("confidence").getAsFloat());
                blockText.append(paraText);
            }
            pageText.append(blockText);
        }
    }