คุณใช้ Firebase ML เพื่อระบุจุดสังเกตที่รู้จักกันดีในรูปภาพได้
ก่อนเริ่มต้น
- หากคุณยังไม่ได้ดำเนินการ เพิ่ม Firebase ลงในโปรเจ็กต์ Android
-
ในไฟล์ Gradle ของโมดูล (ระดับแอป)
(ปกติ
<project>/<app-module>/build.gradle.kts
หรือ<project>/<app-module>/build.gradle
) เพิ่มทรัพยากร Dependency สำหรับไลบรารี Firebase ML Vision สำหรับ Android เราขอแนะนำให้ใช้ Firebase Android BoM เพื่อควบคุมการกำหนดเวอร์ชันไลบรารีdependencies { // Import the BoM for the Firebase platform implementation(platform("com.google.firebase:firebase-bom:33.2.0")) // Add the dependency for the Firebase ML Vision library // When using the BoM, you don't specify versions in Firebase library dependencies implementation 'com.google.firebase:firebase-ml-vision' }
เมื่อใช้Firebase Android BoM แอปจะใช้ไลบรารี Firebase Android เวอร์ชันที่เข้ากันได้เสมอ
(ทางเลือก) เพิ่มทรัพยากร Dependency ของไลบรารี Firebase โดยไม่ใช้ BoM
หากเลือกไม่ใช้ Firebase BoM คุณต้องระบุเวอร์ชันไลบรารี Firebase แต่ละเวอร์ชัน ในบรรทัดทรัพยากร Dependency
โปรดทราบว่าหากคุณใช้ไลบรารี Firebase หลายรายการในแอป เราขอแนะนำอย่างยิ่ง แนะนำให้ใช้ BoM ในการจัดการเวอร์ชันไลบรารี เพื่อให้มั่นใจว่าทุกเวอร์ชัน ที่เข้ากันได้
dependencies { // Add the dependency for the Firebase ML Vision library // When NOT using the BoM, you must specify versions in Firebase library dependencies implementation 'com.google.firebase:firebase-ml-vision:24.1.0' }
-
หากยังไม่ได้เปิดใช้ API ในระบบคลาวด์สำหรับโปรเจ็กต์ของคุณ ให้เปิดใช้ ในขณะนี้:
- เปิดFirebase ML หน้า API ของคอนโซล Firebase
-
หากคุณยังไม่ได้อัปเกรดโปรเจ็กต์เป็นแพ็กเกจราคา Blaze ให้คลิก โปรดอัปเกรดเพื่อดำเนินการ (คุณจะได้รับแจ้งให้อัปเกรดเฉพาะในกรณีต่อไปนี้ ไม่ได้อยู่ในแพ็กเกจ Blaze)
เฉพาะโปรเจ็กต์ระดับ Blaze เท่านั้นที่ใช้ API ในระบบคลาวด์ได้
- หากยังไม่ได้เปิดใช้ API ในระบบคลาวด์ ให้คลิกเปิดใช้ในระบบคลาวด์ API
กำหนดค่าตัวตรวจจับจุดสังเกต
โดยค่าเริ่มต้น ตัวตรวจจับ Cloud จะใช้เวอร์ชันของ STABLE
และแสดงผลลัพธ์สูงสุด 10 รายการ ถ้าต้องการเปลี่ยนแปลงรายการใดรายการหนึ่ง
การตั้งค่า ให้ระบุด้วย FirebaseVisionCloudDetectorOptions
ออบเจ็กต์
ตัวอย่างเช่น หากต้องการเปลี่ยนการตั้งค่าเริ่มต้นทั้ง 2 รายการ ให้สร้าง
FirebaseVisionCloudDetectorOptions
ออบเจ็กต์ดังตัวอย่างต่อไปนี้
ตัวอย่าง:
Kotlin+KTX
val options = FirebaseVisionCloudDetectorOptions.Builder() .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL) .setMaxResults(15) .build()
Java
FirebaseVisionCloudDetectorOptions options = new FirebaseVisionCloudDetectorOptions.Builder() .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL) .setMaxResults(15) .build();
หากต้องการใช้การตั้งค่าเริ่มต้น คุณสามารถใช้
FirebaseVisionCloudDetectorOptions.DEFAULT
ในขั้นตอนถัดไป
เรียกใช้ตัวตรวจจับจุดสังเกต
หากต้องการจดจำจุดสังเกตในรูปภาพ ให้สร้างออบเจ็กต์FirebaseVisionImage
จากอาร์เรย์ Bitmap
, media.Image
, ByteBuffer
, ไบต์ หรือไฟล์ใน
อุปกรณ์ จากนั้นส่งออบเจ็กต์ FirebaseVisionImage
ไปยัง
เมธอด detectInImage
ของ FirebaseVisionCloudLandmarkDetector
สร้างออบเจ็กต์
FirebaseVisionImage
จากรูปภาพ-
วิธีสร้างออบเจ็กต์
FirebaseVisionImage
จากmedia.Image
เช่น เมื่อจับภาพจาก กล้องของอุปกรณ์ ส่งวัตถุmedia.Image
และ การหมุนเวียนเป็นFirebaseVisionImage.fromMediaImage()
หากคุณใช้แท็ก ไลบรารี CameraX,
OnImageCapturedListener
และImageAnalysis.Analyzer
คลาสจะคำนวณค่าการหมุนเวียน คุณต้องแปลงการหมุนเป็น Firebase ML ค่าคงที่ROTATION_
ก่อนโทรFirebaseVisionImage.fromMediaImage()
:Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Vision API // ... } }
หากคุณไม่ได้ใช้ไลบรารีกล้องถ่ายรูปที่ให้การหมุนของภาพ คุณ สามารถคำนวณได้จากการหมุนของอุปกรณ์และการวางแนวของกล้อง เซ็นเซอร์ในอุปกรณ์:
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
จากนั้นส่งออบเจ็กต์
media.Image
และ ค่าการหมุนเวียนเป็นFirebaseVisionImage.fromMediaImage()
:Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
- หากต้องการสร้างออบเจ็กต์
FirebaseVisionImage
จาก URI ของไฟล์ ให้ส่ง บริบทของแอปและ URI ของไฟล์เพื่อFirebaseVisionImage.fromFilePath()
วิธีนี้มีประโยชน์เมื่อคุณ ใช้ IntentACTION_GET_CONTENT
เพื่อแจ้งให้ผู้ใช้เลือก รูปภาพจากแอปแกลเลอรีKotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
- วิธีสร้างออบเจ็กต์
FirebaseVisionImage
จากByteBuffer
หรืออาร์เรย์ไบต์ ให้คำนวณรูปภาพก่อน การหมุนตามที่อธิบายไว้ข้างต้นสำหรับอินพุตmedia.Image
จากนั้นสร้างออบเจ็กต์
FirebaseVisionImageMetadata
ที่มีความสูง ความกว้าง รูปแบบการเข้ารหัสสีของรูปภาพ และการหมุน:Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
ใช้บัฟเฟอร์หรืออาร์เรย์ และออบเจ็กต์ข้อมูลเมตาเพื่อสร้าง ออบเจ็กต์
FirebaseVisionImage
รายการ:Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
- วิธีสร้างออบเจ็กต์
FirebaseVisionImage
จาก ออบเจ็กต์Bitmap
รายการ:Kotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Bitmap
ต้อง ให้ตั้งตรงโดยไม่ต้องมีการหมุนเพิ่มเติม
-
รับอินสแตนซ์ของ
FirebaseVisionCloudLandmarkDetector
:Kotlin+KTX
val detector = FirebaseVision.getInstance() .visionCloudLandmarkDetector // Or, to change the default settings: // val detector = FirebaseVision.getInstance() // .getVisionCloudLandmarkDetector(options)
Java
FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance() .getVisionCloudLandmarkDetector(); // Or, to change the default settings: // FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance() // .getVisionCloudLandmarkDetector(options);
สุดท้าย ส่งรูปภาพไปยังเมธอด
detectInImage
ดังนี้Kotlin+KTX
val result = detector.detectInImage(image) .addOnSuccessListener { firebaseVisionCloudLandmarks -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
Task<List<FirebaseVisionCloudLandmark>> result = detector.detectInImage(image) .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionCloudLandmark>>() { @Override public void onSuccess(List<FirebaseVisionCloudLandmark> firebaseVisionCloudLandmarks) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
รับข้อมูลเกี่ยวกับจุดสังเกตที่ระบบรู้จัก
ถ้าการดำเนินการจดจำจุดสังเกตสำเร็จ รายการ ระบบจะส่งออบเจ็กต์FirebaseVisionCloudLandmark
รายการไปยัง Listener ที่สำเร็จ ชิ้น
ออบเจ็กต์ FirebaseVisionCloudLandmark
แสดงจุดสังเกตที่ระบบรู้จักใน
รูปภาพ สำหรับจุดสังเกตแต่ละรายการ คุณจะเห็นพิกัดขอบเขตของจุดนั้นๆ ในรูปภาพอินพุต
ชื่อจุดสังเกต ละติจูดและลองจิจูด รหัสเอนทิตีของกราฟความรู้
(หากมี) และคะแนนความเชื่อมั่นของการแข่งขัน เช่น
Kotlin+KTX
for (landmark in firebaseVisionCloudLandmarks) { val bounds = landmark.boundingBox val landmarkName = landmark.landmark val entityId = landmark.entityId val confidence = landmark.confidence // Multiple locations are possible, e.g., the location of the depicted // landmark and the location the picture was taken. for (loc in landmark.locations) { val latitude = loc.latitude val longitude = loc.longitude } }
Java
for (FirebaseVisionCloudLandmark landmark: firebaseVisionCloudLandmarks) { Rect bounds = landmark.getBoundingBox(); String landmarkName = landmark.getLandmark(); String entityId = landmark.getEntityId(); float confidence = landmark.getConfidence(); // Multiple locations are possible, e.g., the location of the depicted // landmark and the location the picture was taken. for (FirebaseVisionLatLng loc: landmark.getLocations()) { double latitude = loc.getLatitude(); double longitude = loc.getLongitude(); } }
ขั้นตอนถัดไป
- ก่อนที่จะทำให้แอปที่ใช้ Cloud API ใช้งานได้จริง คุณควรดำเนินการต่อไปนี้ ขั้นตอนเพิ่มเติมบางส่วนเพื่อป้องกันและบรรเทา ผลกระทบจากการเข้าถึง API ที่ไม่ได้รับอนุญาต