Firebase ML を使用してランドマークを認識する(Android)

Firebase ML を使用すると、画像内にあるよく知られたランドマークを認識できます。

始める前に

  1. まだ Firebase を Android プロジェクトに追加していない場合は追加します。
  2. モジュール(アプリレベル)の Gradle ファイル(通常は <project>/<app-module>/build.gradle.kts または <project>/<app-module>/build.gradle)に、Android 用 Firebase ML Vision ライブラリの依存関係を追加します。ライブラリのバージョニングの制御には、Firebase Android BoM を使用することをおすすめします。
    dependencies {
        // Import the BoM for the Firebase platform
        implementation(platform("com.google.firebase:firebase-bom:33.6.0"))
    
        // Add the dependency for the Firebase ML Vision library
        // When using the BoM, you don't specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision'
    }

    Firebase Android BoM を使用すると、アプリは常に互換性のあるバージョンの Firebase Android ライブラリを使用します。

    (代替方法)BoM を使用せずに Firebase ライブラリの依存関係を追加する

    Firebase BoM を使用しない場合は、依存関係の行でそれぞれの Firebase ライブラリのバージョンを指定する必要があります。

    アプリで複数の Firebase ライブラリを使用する場合は、すべてのバージョンの互換性を確保するため、BoM を使用してライブラリのバージョンを管理することを強くおすすめします。

    dependencies {
        // Add the dependency for the Firebase ML Vision library
        // When NOT using the BoM, you must specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision:24.1.0'
    }
    Kotlin 固有のライブラリ モジュールをお探しの場合、 2023 年 10 月(Firebase BoM 32.5.0)以降、Kotlin と Java のどちらのデベロッパーもメイン ライブラリ モジュールを利用できるようになります(詳しくは、このイニシアチブに関するよくある質問をご覧ください)。
  3. プロジェクトで Cloud ベースの API をまだ有効にしていない場合は、ここで有効にします。

    1. Firebase コンソールの Firebase ML の [APIs] ページを開きます。
    2. まだプロジェクトを Blaze 料金プランにアップグレードしていない場合は、[アップグレード] をクリックしてアップグレードします(プロジェクトをアップグレードするよう求められるのは、プロジェクトが Blaze プランでない場合のみです)。

      Blaze レベルのプロジェクトだけが Cloud ベースの API を使用できます。

    3. Cloud ベースの API がまだ有効になっていない場合は、[Cloud ベースの API を有効化] をクリックします。

ランドマーク検出ツールを構成する

デフォルトでは、Cloud 検出ツールは STABLE バージョンのモデルを使用して、最大 10 件の結果を返します。この設定を変更したい場合は、FirebaseVisionCloudDetectorOptions オブジェクトを使用して設定し直します。

たとえば、デフォルト設定を両方とも変更するには、次の例のように FirebaseVisionCloudDetectorOptions オブジェクトをビルドします。

Kotlin+KTX

val options = FirebaseVisionCloudDetectorOptions.Builder()
    .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL)
    .setMaxResults(15)
    .build()

Java

FirebaseVisionCloudDetectorOptions options =
        new FirebaseVisionCloudDetectorOptions.Builder()
                .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL)
                .setMaxResults(15)
                .build();

デフォルト設定を使用するには、次の手順で FirebaseVisionCloudDetectorOptions.DEFAULT を使用します。

ランドマーク検出ツールを実行する

画像内のランドマークを認識するには、FirebaseVisionImage オブジェクトを Bitmapmedia.ImageByteBuffer、バイト配列、デバイス上のファイルのいずれかから作成します。次に、FirebaseVisionImage オブジェクトを FirebaseVisionCloudLandmarkDetectordetectInImage メソッドに渡します。

  1. 画像から FirebaseVisionImage オブジェクトを作成します。

    • FirebaseVisionImage オブジェクトを media.Image オブジェクトから作成するには(デバイスのカメラから画像をキャプチャする場合など)、media.Image オブジェクトと画像の回転を FirebaseVisionImage.fromMediaImage() に渡します。

      CameraX ライブラリを使用する場合は、OnImageCapturedListener クラスと ImageAnalysis.Analyzer クラスによって回転値が計算されるので、FirebaseVisionImage.fromMediaImage() を呼び出す前に、その回転を Firebase MLROTATION_ 定数のいずれかに変換するだけで済みます。

      Kotlin+KTX

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Vision API
                  // ...
              }
          }
      }

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Vision API
              // ...
          }
      }

      画像の回転を取得するカメラ ライブラリを使用しない場合は、デバイスの回転とデバイス内のカメラセンサーの向きから計算できます。

      Kotlin+KTX

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
              .getCameraCharacteristics(cameraId)
              .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      次に、media.Image オブジェクトと回転値を FirebaseVisionImage.fromMediaImage() に渡します。

      Kotlin+KTX

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
    • FirebaseVisionImage オブジェクトをファイルの URI から作成するには、アプリ コンテキストとファイルの URI を FirebaseVisionImage.fromFilePath() に渡します。これは、ACTION_GET_CONTENT インテントを使用して、ギャラリー アプリから画像を選択するようにユーザーに促すときに便利です。

      Kotlin+KTX

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }
    • FirebaseVisionImage オブジェクトを ByteBuffer またはバイト配列から作成するには、media.Image 入力について上記のように、まず画像の回転を計算します。

      次に、画像の高さ、幅、カラー エンコード形式、回転を含む FirebaseVisionImageMetadata オブジェクトを作成します。

      Kotlin+KTX

      val metadata = FirebaseVisionImageMetadata.Builder()
          .setWidth(480) // 480x360 is typically sufficient for
          .setHeight(360) // image recognition
          .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
          .setRotation(rotation)
          .build()

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      メタデータ オブジェクトと、バッファまたは配列を使用して、FirebaseVisionImage オブジェクトを作成します。

      Kotlin+KTX

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
    • FirebaseVisionImage オブジェクトを Bitmap オブジェクトから作成するコードは、以下のとおりです。

      Kotlin+KTX

      val image = FirebaseVisionImage.fromBitmap(bitmap)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
      Bitmap オブジェクトによって表される画像は、これ以上回転させる必要がないように、正しい向きになっている必要があります。

  2. FirebaseVisionCloudLandmarkDetector のインスタンスを取得します。

    Kotlin+KTX

    val detector = FirebaseVision.getInstance()
        .visionCloudLandmarkDetector
    // Or, to change the default settings:
    // val detector = FirebaseVision.getInstance()
    //         .getVisionCloudLandmarkDetector(options)

    Java

    FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance()
            .getVisionCloudLandmarkDetector();
    // Or, to change the default settings:
    // FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance()
    //         .getVisionCloudLandmarkDetector(options);
  3. 最後に、画像を detectInImage メソッドに渡します。

    Kotlin+KTX

    val result = detector.detectInImage(image)
        .addOnSuccessListener { firebaseVisionCloudLandmarks ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

    Java

    Task<List<FirebaseVisionCloudLandmark>> result = detector.detectInImage(image)
            .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionCloudLandmark>>() {
                @Override
                public void onSuccess(List<FirebaseVisionCloudLandmark> firebaseVisionCloudLandmarks) {
                    // Task completed successfully
                    // ...
                }
            })
            .addOnFailureListener(new OnFailureListener() {
                @Override
                public void onFailure(@NonNull Exception e) {
                    // Task failed with an exception
                    // ...
                }
            });

認識されたランドマークに関する情報を取得する

ランドマーク認識オペレーションが成功すると、FirebaseVisionCloudLandmark オブジェクトのリストが成功リスナーに渡されます。各 FirebaseVisionCloudLandmark オブジェクトは画像内で認識されたランドマークを表します。ランドマークごとに、入力画像の境界座標、ランドマーク名、緯度と経度、ナレッジグラフ エンティティの ID(使用できる場合)、マッチの信頼スコアを取得できます。次に例を示します。

Kotlin+KTX

for (landmark in firebaseVisionCloudLandmarks) {
    val bounds = landmark.boundingBox
    val landmarkName = landmark.landmark
    val entityId = landmark.entityId
    val confidence = landmark.confidence

    // Multiple locations are possible, e.g., the location of the depicted
    // landmark and the location the picture was taken.
    for (loc in landmark.locations) {
        val latitude = loc.latitude
        val longitude = loc.longitude
    }
}

Java

for (FirebaseVisionCloudLandmark landmark: firebaseVisionCloudLandmarks) {

    Rect bounds = landmark.getBoundingBox();
    String landmarkName = landmark.getLandmark();
    String entityId = landmark.getEntityId();
    float confidence = landmark.getConfidence();

    // Multiple locations are possible, e.g., the location of the depicted
    // landmark and the location the picture was taken.
    for (FirebaseVisionLatLng loc: landmark.getLocations()) {
        double latitude = loc.getLatitude();
        double longitude = loc.getLongitude();
    }
}

次のステップ