You can use ML Kit to label objects recognized in an image, using either an on-device model or a cloud model. See the overview to learn about the benefits of each approach.
Before you begin
- If you haven't already, add Firebase to your Android project.
- Add the dependencies for the ML Kit Android libraries to your module
(app-level) Gradle file (usually
app/build.gradle
):apply plugin: 'com.android.application' apply plugin: 'com.google.gms.google-services' dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:24.0.3' implementation 'com.google.firebase:firebase-ml-vision-image-label-model:20.0.1' }
-
Optional but recommended: If you use the on-device API, configure your
app to automatically download the ML model to the device after your app is
installed from the Play Store.
To do so, add the following declaration to your app's
AndroidManifest.xml
file: If you do not enable install-time model downloads, the model will be downloaded the first time you run the on-device detector. Requests you make before the download has completed will produce no results.<application ...> ... <meta-data android:name="com.google.firebase.ml.vision.DEPENDENCIES" android:value="label" /> <!-- To use multiple models: android:value="label,model2,model3" --> </application>
-
If you want to use the Cloud-based model, and you have not already enabled the Cloud-based APIs for your project, do so now:
- Open the ML Kit APIs page of the Firebase console.
-
If you have not already upgraded your project to a Blaze pricing plan, click Upgrade to do so. (You will be prompted to upgrade only if your project isn't on the Blaze plan.)
Only Blaze-level projects can use Cloud-based APIs.
- If Cloud-based APIs aren't already enabled, click Enable Cloud-based APIs.
If you want to use only the on-device model, you can skip this step.
Now you are ready to label images using either an on-device model or a cloud-based model.
1. Prepare the input image
Create aFirebaseVisionImage
object from your image.
The image labeler runs fastest when you use a Bitmap
or, if you use the
camera2 API, a JPEG-formatted media.Image
, which are recommended when
possible.
-
To create a
FirebaseVisionImage
object from amedia.Image
object, such as when capturing an image from a device's camera, pass themedia.Image
object and the image's rotation toFirebaseVisionImage.fromMediaImage()
.If you use the CameraX library, the
OnImageCapturedListener
andImageAnalysis.Analyzer
classes calculate the rotation value for you, so you just need to convert the rotation to one of ML Kit'sROTATION_
constants before callingFirebaseVisionImage.fromMediaImage()
:Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
If you don't use a camera library that gives you the image's rotation, you can calculate it from the device's rotation and the orientation of camera sensor in the device:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Then, pass the
media.Image
object and the rotation value toFirebaseVisionImage.fromMediaImage()
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- To create a
FirebaseVisionImage
object from a file URI, pass the app context and file URI toFirebaseVisionImage.fromFilePath()
. This is useful when you use anACTION_GET_CONTENT
intent to prompt the user to select an image from their gallery app.Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- To create a
FirebaseVisionImage
object from aByteBuffer
or a byte array, first calculate the image rotation as described above formedia.Image
input.Then, create a
FirebaseVisionImageMetadata
object that contains the image's height, width, color encoding format, and rotation:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Use the buffer or array, and the metadata object, to create a
FirebaseVisionImage
object:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
- To create a
FirebaseVisionImage
object from aBitmap
object:Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
object must be upright, with no additional rotation required.
2. Configure and run the image labeler
To label objects in an image, pass theFirebaseVisionImage
object to the
FirebaseVisionImageLabeler
's processImage
method.
First, get an instance of
FirebaseVisionImageLabeler
.If you want to use the on-device image labeler:
Java
FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() .getOnDeviceImageLabeler(); // Or, to set the minimum confidence required: // FirebaseVisionOnDeviceImageLabelerOptions options = // new FirebaseVisionOnDeviceImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build(); // FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() // .getOnDeviceImageLabeler(options);
Kotlin+KTX
val labeler = FirebaseVision.getInstance().getOnDeviceImageLabeler() // Or, to set the minimum confidence required: // val options = FirebaseVisionOnDeviceImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build() // val labeler = FirebaseVision.getInstance().getOnDeviceImageLabeler(options)
If you want to use the cloud image labeler:
Java
FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() .getCloudImageLabeler(); // Or, to set the minimum confidence required: // FirebaseVisionCloudImageLabelerOptions options = // new FirebaseVisionCloudImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build(); // FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() // .getCloudImageLabeler(options);
Kotlin+KTX
val labeler = FirebaseVision.getInstance().getCloudImageLabeler() // Or, to set the minimum confidence required: // val options = FirebaseVisionCloudImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build() // val labeler = FirebaseVision.getInstance().getCloudImageLabeler(options)
Then, pass the image to the
processImage()
method:Java
labeler.processImage(image) .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionImageLabel>>() { @Override public void onSuccess(List<FirebaseVisionImageLabel> labels) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Kotlin+KTX
labeler.processImage(image) .addOnSuccessListener { labels -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
3. Get information about labeled objects
If the image labeling operation succeeds, a list ofFirebaseVisionImageLabel
objects will be passed to the
success listener. Each FirebaseVisionImageLabel
object represents something
that was labeled in the image. For each label, you can get the label's text
description, its
Knowledge Graph entity ID
(if available), and the confidence score of the match. For example:
Java
for (FirebaseVisionImageLabel label: labels) {
String text = label.getText();
String entityId = label.getEntityId();
float confidence = label.getConfidence();
}
Kotlin+KTX
for (label in labels) {
val text = label.text
val entityId = label.entityId
val confidence = label.confidence
}
Tips to improve real-time performance
If you want to label images in a real-time application, follow these guidelines to achieve the best framerates:
- Throttle calls to the image labeler. If a new video frame becomes available while the image labeler is running, drop the frame.
- If you are using the output of the image labeler to overlay graphics on the input image, first get the result from ML Kit, then render the image and overlay in a single step. By doing so, you render to the display surface only once for each input frame.
-
If you use the Camera2 API, capture images in
ImageFormat.YUV_420_888
format.If you use the older Camera API, capture images in
ImageFormat.NV21
format.
Next steps
- Before you deploy to production an app that uses a Cloud API, you should take some additional steps to prevent and mitigate the effect of unauthorized API access.