คุณใช้ ML Kit เพื่อตรวจหาและติดตามวัตถุในเฟรมของวิดีโอได้
เมื่อส่งรูปภาพ ML Kit แล้ว ML Kit จะแสดงผลรายการรูปภาพแต่ละรูป วัตถุที่ตรวจพบได้สูงสุด 5 รายการและตำแหน่งในรูปภาพ เมื่อตรวจพบ ในสตรีมวิดีโอ ออบเจ็กต์ทุกรายการจะมีรหัสที่ใช้ติดตาม ในรูปภาพได้ คุณยังเลือกเปิดใช้ออบเจ็กต์คร่าวๆ ได้ด้วย ซึ่งติดป้ายกำกับออบเจ็กต์ที่มีคำอธิบายหมวดหมู่แบบกว้างๆ
ก่อนเริ่มต้น
- หากคุณยังไม่ได้ดำเนินการ เพิ่ม Firebase ลงในโปรเจ็กต์ Android
- เพิ่มทรัพยากร Dependency สำหรับไลบรารี ML Kit Android ลงในโมดูล
ไฟล์ Gradle (ระดับแอป) (ปกติราคา
app/build.gradle
): วันที่apply plugin: 'com.android.application' apply plugin: 'com.google.gms.google-services' dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:24.0.3' implementation 'com.google.firebase:firebase-ml-vision-object-detection-model:19.0.6' }
1. กำหนดค่าตัวตรวจจับออบเจ็กต์
หากต้องการเริ่มตรวจจับและติดตามออบเจ็กต์ ให้สร้างอินสแตนซ์ของ
FirebaseVisionObjectDetector
(ไม่บังคับ) ระบุการตั้งค่าตัวตรวจจับที่คุณ
ต้องการเปลี่ยนจากค่าเริ่มต้น
กำหนดค่าตัวตรวจจับออบเจ็กต์สำหรับ Use Case ของคุณด้วย ออบเจ็กต์
FirebaseVisionObjectDetectorOptions
รายการ คุณสามารถเปลี่ยนสิ่งต่อไปนี้ได้ การตั้งค่าต่อไปนี้การตั้งค่าตัวตรวจจับวัตถุ โหมดการตรวจจับ STREAM_MODE
(ค่าเริ่มต้น) | วันที่SINGLE_IMAGE_MODE
ใน
STREAM_MODE
(ค่าเริ่มต้น) ตัวตรวจจับวัตถุจะทำงาน โดยมีเวลาในการตอบสนองต่ำ แต่อาจให้ผลลัพธ์ที่ไม่สมบูรณ์ (เช่น กรอบล้อมรอบหรือป้ายกำกับหมวดหมู่ที่ไม่ระบุ) ใน 2-3 รายการแรก การเรียกใช้ตัวตรวจจับ และในอีกSTREAM_MODE
ตัวตรวจจับจะกำหนดรหัสติดตามให้กับออบเจ็กต์ ซึ่งใช้เพื่อ ติดตามออบเจ็กต์ในเฟรมต่างๆ ใช้โหมดนี้เมื่อคุณต้องการติดตาม หรือเมื่อเวลาในการตอบสนองต่ำมีความสำคัญ เช่น เมื่อประมวลผล สตรีมวิดีโอแบบเรียลไทม์ในอีก
SINGLE_IMAGE_MODE
ตัวตรวจจับวัตถุจะรอ จนถึงกรอบล้อมรอบของออบเจ็กต์ที่ตรวจพบ และ (หากคุณเปิดใช้ หมวดหมู่) ของหมวดหมู่ จะพร้อมใช้งานก่อนส่งคืน ผลลัพธ์ ด้วยเหตุนี้ เวลาในการตอบสนองของการตรวจจับจึงอาจสูงขึ้น นอกจากนี้ ในSINGLE_IMAGE_MODE
รหัสติดตามจะไม่ใช่ มอบหมายแล้ว ใช้โหมดนี้หากเวลาในการตอบสนองนั้นไม่ใช่เรื่องร้ายแรงและคุณจำเป็น ต้องการจัดการกับผลลัพธ์บางส่วนตรวจหาและติดตามวัตถุหลายรายการ false
(ค่าเริ่มต้น) | วันที่true
สามารถตรวจจับและติดตามวัตถุได้สูงสุด 5 รายการ หรือเฉพาะวัตถุที่พบมากที่สุด ออบเจ็กต์ที่โดดเด่น (ค่าเริ่มต้น)
จำแนกประเภทวัตถุ false
(ค่าเริ่มต้น) | วันที่true
ระบุว่าจะจัดประเภทออบเจ็กต์ที่ตรวจพบเป็นหมวดหมู่คร่าวๆ หรือไม่ เมื่อเปิดใช้ ตัวตรวจจับวัตถุจะจัดประเภทออบเจ็กต์ลงใน หมวดหมู่ต่อไปนี้: สินค้าแฟชั่น อาหาร ของใช้ในบ้าน สถานที่ ต้นไม้ และสิ่งที่ไม่รู้จัก
API การติดตามและตรวจจับออบเจ็กต์ได้รับการเพิ่มประสิทธิภาพสำหรับการใช้งานหลัก 2 รายการนี้ กรณี:
- การตรวจจับแบบเรียลไทม์และการติดตามวัตถุที่โดดเด่นที่สุดในกล้อง ช่องมองภาพ
- การตรวจจับวัตถุหลายรายการจากภาพนิ่ง
วิธีกำหนดค่า API สำหรับกรณีการใช้งานเหล่านี้
Java
// Live detection and tracking FirebaseVisionObjectDetectorOptions options = new FirebaseVisionObjectDetectorOptions.Builder() .setDetectorMode(FirebaseVisionObjectDetectorOptions.STREAM_MODE) .enableClassification() // Optional .build(); // Multiple object detection in static images FirebaseVisionObjectDetectorOptions options = new FirebaseVisionObjectDetectorOptions.Builder() .setDetectorMode(FirebaseVisionObjectDetectorOptions.SINGLE_IMAGE_MODE) .enableMultipleObjects() .enableClassification() // Optional .build();
Kotlin+KTX
// Live detection and tracking val options = FirebaseVisionObjectDetectorOptions.Builder() .setDetectorMode(FirebaseVisionObjectDetectorOptions.STREAM_MODE) .enableClassification() // Optional .build() // Multiple object detection in static images val options = FirebaseVisionObjectDetectorOptions.Builder() .setDetectorMode(FirebaseVisionObjectDetectorOptions.SINGLE_IMAGE_MODE) .enableMultipleObjects() .enableClassification() // Optional .build()
รับอินสแตนซ์ของ
FirebaseVisionObjectDetector
:Java
FirebaseVisionObjectDetector objectDetector = FirebaseVision.getInstance().getOnDeviceObjectDetector(); // Or, to change the default settings: FirebaseVisionObjectDetector objectDetector = FirebaseVision.getInstance().getOnDeviceObjectDetector(options);
Kotlin+KTX
val objectDetector = FirebaseVision.getInstance().getOnDeviceObjectDetector() // Or, to change the default settings: val objectDetector = FirebaseVision.getInstance().getOnDeviceObjectDetector(options)
2. เรียกใช้ตัวตรวจจับวัตถุ
หากต้องการตรวจจับและติดตามวัตถุ ให้ส่งรูปภาพไปยัง FirebaseVisionObjectDetector
เมธอด processImage()
ของอินสแตนซ์
ทำตามขั้นตอนต่อไปนี้สำหรับวิดีโอแต่ละเฟรมหรือรูปภาพในลำดับ
สร้างวัตถุ
FirebaseVisionImage
จากรูปภาพ-
วิธีสร้างออบเจ็กต์
FirebaseVisionImage
จากmedia.Image
เช่น เมื่อจับภาพจาก กล้องของอุปกรณ์ ส่งวัตถุmedia.Image
และ การหมุนเวียนเป็นFirebaseVisionImage.fromMediaImage()
หากคุณใช้แท็ก ไลบรารี CameraX,
OnImageCapturedListener
และImageAnalysis.Analyzer
คลาสจะคำนวณค่าการหมุนเวียน คุณเพียงแค่ต้องแปลงการหมุนเป็น ML Kit ค่าคงที่ROTATION_
ก่อนโทรFirebaseVisionImage.fromMediaImage()
:Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
หากคุณไม่ได้ใช้ไลบรารีกล้องถ่ายรูปที่ให้การหมุนของภาพ คุณ สามารถคำนวณได้จากการหมุนของอุปกรณ์และการวางแนวของกล้อง เซ็นเซอร์ในอุปกรณ์:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
จากนั้นส่งออบเจ็กต์
media.Image
และ ค่าการหมุนเวียนเป็นFirebaseVisionImage.fromMediaImage()
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- หากต้องการสร้างออบเจ็กต์
FirebaseVisionImage
จาก URI ของไฟล์ ให้ส่ง บริบทของแอปและ URI ของไฟล์เพื่อFirebaseVisionImage.fromFilePath()
วิธีนี้มีประโยชน์เมื่อคุณ ใช้ IntentACTION_GET_CONTENT
เพื่อแจ้งให้ผู้ใช้เลือก รูปภาพจากแอปแกลเลอรีJava
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- วิธีสร้างออบเจ็กต์
FirebaseVisionImage
จากByteBuffer
หรืออาร์เรย์ไบต์ ให้คำนวณรูปภาพก่อน การหมุนตามที่อธิบายไว้ข้างต้นสำหรับอินพุตmedia.Image
จากนั้นสร้างออบเจ็กต์
FirebaseVisionImageMetadata
ที่มีความสูง ความกว้าง รูปแบบการเข้ารหัสสีของรูปภาพ และการหมุน:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
ใช้บัฟเฟอร์หรืออาร์เรย์ และออบเจ็กต์ข้อมูลเมตาเพื่อสร้าง ออบเจ็กต์
FirebaseVisionImage
รายการ:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
- วิธีสร้างออบเจ็กต์
FirebaseVisionImage
จาก ออบเจ็กต์Bitmap
รายการ:Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
ต้อง ให้ตั้งตรงโดยไม่ต้องมีการหมุนเพิ่มเติม
-
ส่งรูปภาพไปยังเมธอด
processImage()
:Java
objectDetector.processImage(image) .addOnSuccessListener( new OnSuccessListener<List<FirebaseVisionObject>>() { @Override public void onSuccess(List<FirebaseVisionObject> detectedObjects) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Kotlin+KTX
objectDetector.processImage(image) .addOnSuccessListener { detectedObjects -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
หากโทรหา
processImage()
สําเร็จ ระบบจะแสดงรายการFirebaseVisionObject
กับผู้ฟังที่ประสบความสำเร็จFirebaseVisionObject
แต่ละรายการจะมีพร็อพเพอร์ตี้ต่อไปนี้กรอบล้อมรอบ Rect
ที่ระบุตำแหน่งของออบเจ็กต์ในส่วน รูปภาพรหัสติดตาม จำนวนเต็มที่ระบุออบเจ็กต์ในรูปภาพ Null in SINGLE_IMAGE_mode หมวดหมู่ หมวดหมู่คร่าวๆ ของออบเจ็กต์ หากตัวตรวจจับวัตถุไม่ เปิดใช้การแยกประเภทไว้เสมอ FirebaseVisionObject.CATEGORY_UNKNOWN
ความเชื่อมั่น ค่าความเชื่อมั่นของการจัดประเภทออบเจ็กต์ หากออบเจ็กต์ ตัวตรวจจับไม่ได้เปิดใช้การแยกประเภท หรือออบเจ็กต์อยู่ จัดอยู่ในประเภทที่ไม่รู้จัก นี่คือ null
Java
// The list of detected objects contains one item if multiple object detection wasn't enabled. for (FirebaseVisionObject obj : detectedObjects) { Integer id = obj.getTrackingId(); Rect bounds = obj.getBoundingBox(); // If classification was enabled: int category = obj.getClassificationCategory(); Float confidence = obj.getClassificationConfidence(); }
Kotlin+KTX
// The list of detected objects contains one item if multiple object detection wasn't enabled. for (obj in detectedObjects) { val id = obj.trackingId // A number that identifies the object across images val bounds = obj.boundingBox // The object's position in the image // If classification was enabled: val category = obj.classificationCategory val confidence = obj.classificationConfidence }
การปรับปรุงความสามารถในการใช้งานและประสิทธิภาพ
โปรดปฏิบัติตามหลักเกณฑ์ต่อไปนี้ในแอปเพื่อให้ผู้ใช้ได้รับประสบการณ์ที่ดีที่สุด
- การตรวจจับออบเจ็กต์ที่ประสบความสำเร็จขึ้นอยู่กับความซับซ้อนของภาพของออบเจ็กต์ วัตถุ ที่มีคุณลักษณะด้านภาพไม่กี่อย่าง อาจต้องใช้พื้นที่ส่วนใหญ่ของ รูปภาพที่จะตรวจจับ คุณควรให้คำแนะนำแก่ผู้ใช้เกี่ยวกับการจับภาพ ที่ทำงานได้ดีกับวัตถุชนิดที่คุณต้องการตรวจจับ
- เมื่อใช้การจำแนกประเภท หากต้องการตรวจหาวัตถุที่ไม่ตก อยู่ในหมวดหมู่ที่สนับสนุนอย่างชัดเจน ใช้การจัดการพิเศษสำหรับสิ่งที่ไม่ทราบ ออบเจ็กต์
นอกจากนี้ คุณยังดู [แอปแสดงดีไซน์ Material ของ ML Kit][showcase-link]{: .external} และ ดีไซน์ Material คอลเล็กชันรูปแบบของฟีเจอร์ที่ขับเคลื่อนด้วยแมชชีนเลิร์นนิง
เมื่อใช้โหมดสตรีมมิงในแอปพลิเคชันแบบเรียลไทม์ ให้ทำตามหลักเกณฑ์ต่อไปนี้เพื่อ ได้อัตราเฟรมที่ดีที่สุด
อย่าใช้การตรวจหาวัตถุหลายรายการในโหมดสตรีมมิง เนื่องจากอุปกรณ์ส่วนใหญ่จะไม่ สามารถสร้างอัตราเฟรมที่เพียงพอ
ปิดใช้การแยกประเภทหากไม่ต้องการใช้
- กดคันเร่งไปยังตัวตรวจจับ หากเฟรมวิดีโอใหม่กลายเป็น วางเฟรมได้ในขณะที่ตัวตรวจจับกำลังทำงานอยู่
- หากคุณกำลังใช้เอาต์พุตของเครื่องมือตรวจจับเพื่อวางซ้อนกราฟิก รูปภาพอินพุต รับผลลัพธ์จาก ML Kit ก่อน จากนั้นจึงแสดงผลรูปภาพ ซ้อนทับในขั้นตอนเดียว การทำเช่นนี้จะช่วยให้แสดงผลบนพื้นผิวจอแสดงผล เพียงครั้งเดียวสำหรับเฟรมอินพุตแต่ละเฟรม
-
หากคุณใช้ Camera2 API ให้จับภาพใน
ImageFormat.YUV_420_888
หากคุณใช้ Camera API รุ่นเก่า ให้จับภาพใน
ImageFormat.NV21