Po wytrenowaniu własnego modelu za pomocą AutoML Vision Edge możesz go używać w aplikacji do oznaczania obrazów.
Modele wytrenowane za pomocą AutoML Vision Edge można integrować na 2 sposoby: możesz umieścić model w folderze komponentów aplikacji lub pobrać go dynamicznie z Firebase.
Opcje grupowania modeli | |
---|---|
W pakiecie w aplikacji |
|
Hostowane w Firebase |
|
Zanim zaczniesz
Dodaj zależności do bibliotek ML Kit na Androida do pliku Gradle modułu na poziomie aplikacji (zwykle
app/build.gradle
):Aby połączyć model z aplikacją:
dependencies { // ... // Image labeling feature with bundled automl model implementation 'com.google.mlkit:image-labeling-custom:16.3.1' }
Aby dynamicznie pobierać model z Firebase, dodaj zależność
linkFirebase
:dependencies { // ... // Image labeling feature with automl model downloaded // from firebase implementation 'com.google.mlkit:image-labeling-custom:16.3.1' implementation 'com.google.mlkit:linkfirebase:16.1.0' }
Jeśli chcesz pobrać model, dodaj Firebase do projektu na Androida, jeśli nie zostało to jeszcze zrobione. Nie jest to wymagane, gdy model jest w pakiecie.
1. Wczytaj model
Skonfiguruj źródło modelu lokalnego
Aby połączyć model z aplikacją:
Wyodrębnij model i jego metadane z archiwum ZIP pobranego z konsoli Firebase. Zalecamy używanie plików w postaci pobranej, bez wprowadzania zmian (w tym nazw plików).
Umieść model i jego metadane w pakiecie aplikacji:
- Jeśli w projekcie nie masz folderu komponentów, utwórz go, klikając
app/
prawym przyciskiem myszy, a następnie klikając Nowy > Folder > Folder komponentów. - Utwórz podfolder w folderze Assets, który będzie zawierać pliki modelu.
- Skopiuj pliki
model.tflite
,dict.txt
imanifest.json
do podfolderu (wszystkie 3 pliki muszą znajdować się w tym samym folderze).
- Jeśli w projekcie nie masz folderu komponentów, utwórz go, klikając
Aby Gradle nie kompresował pliku modelu podczas kompilowania aplikacji, dodaj do pliku
build.gradle
aplikacji te informacje:android { // ... aaptOptions { noCompress "tflite" } }
Plik modelu zostanie dodany do pakietu aplikacji i będzie dostępny dla ML Kit jako surowy zasób.
Utwórz obiekt
LocalModel
, podając ścieżkę do pliku manifestu modelu:Java
AutoMLImageLabelerLocalModel localModel = new AutoMLImageLabelerLocalModel.Builder() .setAssetFilePath("manifest.json") // or .setAbsoluteFilePath(absolute file path to manifest file) .build();
Kotlin
val localModel = LocalModel.Builder() .setAssetManifestFilePath("manifest.json") // or .setAbsoluteManifestFilePath(absolute file path to manifest file) .build()
Konfigurowanie źródła modelu hostowanego w Firebase
Aby użyć modelu hostowanego zdalnie, utwórz obiekt CustomRemoteModel
, podając nazwę przypisaną do modelu podczas jego publikowania:
Java
// Specify the name you assigned in the Firebase console.
FirebaseModelSource firebaseModelSource =
new FirebaseModelSource.Builder("your_model_name").build();
CustomRemoteModel remoteModel =
new CustomRemoteModel.Builder(firebaseModelSource).build();
Kotlin
// Specify the name you assigned in the Firebase console.
val firebaseModelSource = FirebaseModelSource.Builder("your_model_name")
.build()
val remoteModel = CustomRemoteModel.Builder(firebaseModelSource).build()
Następnie uruchom zadanie pobierania modelu, określając warunki, na jakich chcesz zezwolić na pobieranie. Jeśli model nie jest dostępny na urządzeniu lub jest dostępna nowsza wersja modelu, zadanie asynchronicznie pobierze model z Firebase:
Java
DownloadConditions downloadConditions = new DownloadConditions.Builder()
.requireWifi()
.build();
RemoteModelManager.getInstance().download(remoteModel, downloadConditions)
.addOnSuccessListener(new OnSuccessListener<Void>() {
@Override
public void onSuccess(@NonNull Task<Void> task) {
// Success.
}
});
Kotlin
val downloadConditions = DownloadConditions.Builder()
.requireWifi()
.build()
RemoteModelManager.getInstance().download(remoteModel, downloadConditions)
.addOnSuccessListener {
// Success.
}
Wiele aplikacji inicjuje zadanie pobierania w kodzie inicjującym, ale możesz to zrobić w dowolnym momencie, zanim zaczniesz używać modelu.
Tworzenie etykietowania obrazu na podstawie modelu
Po skonfigurowaniu źródeł modeli utwórz obiekt ImageLabeler
na podstawie jednego z nich.
Jeśli masz tylko model zainstalowany lokalnie, utwórz etykietownik na podstawie obiektu CustomImageLabelerOptions
i skonfiguruj próg poziomu ufności, który chcesz wymagać (patrz Ocenianie modelu):
Java
CustomImageLabelerOptions customImageLabelerOptions = new CustomImageLabelerOptions.Builder(localModel)
.setConfidenceThreshold(0.0f) // Evaluate your model in the Cloud console
// to determine an appropriate value.
.build();
ImageLabeler labeler = ImageLabeling.getClient(customImageLabelerOptions);
Kotlin
val customImageLabelerOptions = CustomImageLabelerOptions.Builder(localModel)
.setConfidenceThreshold(0.0f) // Evaluate your model in the Cloud console
// to determine an appropriate value.
.build()
val labeler = ImageLabeling.getClient(customImageLabelerOptions)
Jeśli masz model hostowany zdalnie, przed uruchomieniem musisz sprawdzić, czy został pobrany. Stan zadania pobierania modelu możesz sprawdzić za pomocą metody isModelDownloaded()
menedżera modeli.
Musisz to potwierdzić tylko przed uruchomieniem etykietowania, ale jeśli masz model hostowany zdalnie i model w pakiecie lokalnym, warto wykonać tę weryfikację podczas tworzenia etykietowania obrazu: utwórz etykietowanie z modelu zdalnego, jeśli został pobrany, a w przeciwnym razie z modelu lokalnego.
Java
RemoteModelManager.getInstance().isModelDownloaded(remoteModel)
.addOnSuccessListener(new OnSuccessListener<Boolean>() {
@Override
public void onSuccess(Boolean isDownloaded) {
CustomImageLabelerOptions.Builder optionsBuilder;
if (isDownloaded) {
optionsBuilder = new CustomImageLabelerOptions.Builder(remoteModel);
} else {
optionsBuilder = new CustomImageLabelerOptions.Builder(localModel);
}
CustomImageLabelerOptions options = optionsBuilder
.setConfidenceThreshold(0.0f) // Evaluate your model in the Cloud console
// to determine an appropriate threshold.
.build();
ImageLabeler labeler = ImageLabeling.getClient(options);
}
});
Kotlin
RemoteModelManager.getInstance().isModelDownloaded(remoteModel)
.addOnSuccessListener { isDownloaded ->
val optionsBuilder =
if (isDownloaded) {
CustomImageLabelerOptions.Builder(remoteModel)
} else {
CustomImageLabelerOptions.Builder(localModel)
}
// Evaluate your model in the Cloud console to determine an appropriate threshold.
val options = optionsBuilder.setConfidenceThreshold(0.0f).build()
val labeler = ImageLabeling.getClient(options)
}
Jeśli masz tylko model hostowany zdalnie, wyłącz funkcje związane z modelem (np. wygaszaj lub ukryj część interfejsu użytkownika), dopóki nie potwierdzisz, że model został pobrany. Możesz to zrobić, dołączając listenera do metody download()
menedżera modelu:
Java
RemoteModelManager.getInstance().download(remoteModel, conditions)
.addOnSuccessListener(new OnSuccessListener<Void>() {
@Override
public void onSuccess(Void v) {
// Download complete. Depending on your app, you could enable
// the ML feature, or switch from the local model to the remote
// model, etc.
}
});
Kotlin
RemoteModelManager.getInstance().download(remoteModel, conditions)
.addOnSuccessListener {
// Download complete. Depending on your app, you could enable the ML
// feature, or switch from the local model to the remote model, etc.
}
2. Przygotowywanie obrazu wejściowego
Następnie dla każdego obrazu, który chcesz otagować, utwórz obiekt InputImage
. Narzędzie do oznaczania obrazów działa najszybciej, gdy używasz formatu Bitmap
lub, jeśli korzystasz z interfejsu camera2 API, YUV_420_888 media.Image
, co jest zalecane, gdy to możliwe.
Możesz utworzyć InputImage
z różnych źródeł. Każde z nich opisane jest poniżej.
Korzystanie z media.Image
Aby utworzyć obiekt InputImage
na podstawie obiektu media.Image
, na przykład podczas robienia zdjęcia aparatem urządzenia, przekaż obiekt media.Image
i obrót obrazu do obiektu InputImage.fromMediaImage()
.
Jeśli używasz biblioteki
CameraX, klasy OnImageCapturedListener
i
ImageAnalysis.Analyzer
obliczają wartość obrotu za Ciebie.
Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy?) { val mediaImage = imageProxy?.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees); // Pass image to an ML Kit Vision API // ... } }
Jeśli nie używasz biblioteki aparatu, która podaje stopień obrotu obrazu, możesz go obliczyć na podstawie stopnia obrotu urządzenia i orientacji czujnika aparatu na urządzeniu:
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Następnie prześlij obiekt media.Image
i wartość stopnia obrotu do InputImage.fromMediaImage()
:
Kotlin+KTX
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
Za pomocą identyfikatora URI pliku
Aby utworzyć obiekt InputImage
z identyfikatora URI pliku, prześlij kontekst aplikacji i identyfikator URI pliku do funkcji InputImage.fromFilePath()
. Jest to przydatne, gdy używasz intencjonalnego wywołania ACTION_GET_CONTENT
, aby poprosić użytkownika o wybranie obrazu z aplikacji Galeria.
Kotlin+KTX
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Używanie ByteBuffer
lub ByteArray
Aby utworzyć obiekt InputImage
na podstawie ByteBuffer
lub ByteArray
, oblicz najpierw stopień obrotu obrazu zgodnie z opisem podanym wcześniej dla danych wejściowych media.Image
.
Następnie utwórz obiekt InputImage
z buforem lub tablicą, a także wysokość, szerokość, format kodowania kolorów i stopień obrotu obrazu:
Kotlin+KTX
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Korzystanie z: Bitmap
Aby utworzyć obiekt InputImage
z obiektu Bitmap
, zastosuj tę deklarację:
Kotlin+KTX
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
Obraz jest reprezentowany przez obiekt Bitmap
z stopniami obrotu.
3. Uruchom narzędzie do etykietowania obrazów
Aby oznaczać etykietami obiekty na obrazie, przekaż obiekt image
do metody process()
obiektu ImageLabeler
.
Java
labeler.process(image)
.addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() {
@Override
public void onSuccess(List<ImageLabel> labels) {
// Task completed successfully
// ...
}
})
.addOnFailureListener(new OnFailureListener() {
@Override
public void onFailure(@NonNull Exception e) {
// Task failed with an exception
// ...
}
});
Kotlin
labeler.process(image)
.addOnSuccessListener { labels ->
// Task completed successfully
// ...
}
.addOnFailureListener { e ->
// Task failed with an exception
// ...
}
4. Uzyskiwanie informacji o oznaczonych obiektach
Jeśli oznaczanie obrazów etykietami się powiedzie, do detektora sukcesu zostanie przekazana lista obiektów ImageLabel
. Każdy obiekt ImageLabel
reprezentuje coś, co zostało oznaczone na obrazie. Możesz uzyskać opis tekstowy każdej etykiety, wskaźnik ufności dopasowania oraz indeks dopasowania.
Przykład:
Java
for (ImageLabel label : labels) {
String text = label.getText();
float confidence = label.getConfidence();
int index = label.getIndex();
}
Kotlin
for (label in labels) {
val text = label.text
val confidence = label.confidence
val index = label.index
}
Wskazówki dotyczące zwiększania skuteczności w czasie rzeczywistym
Jeśli chcesz oznaczać obrazy w aplikacji działającej w czasie rzeczywistym, postępuj zgodnie z tymi wskazówkami, aby uzyskać najlepszą liczbę klatek:
- Ogranicz wywołania do etykietowania obrazów. Jeśli podczas działania etykietowania obrazu pojawi się nowa klatka wideo, odrzuć ją. Przykład znajdziesz w klasie
VisionProcessorBase
w przykładowej aplikacji z krótkim wprowadzeniem. - Jeśli używasz danych wyjściowych etykietowania obrazu do nakładania grafiki na obraz wejściowy, najpierw uzyskaj wynik, a następnie renderuj obraz i nałóż go w jednym kroku. W ten sposób renderujesz na powierzchni wyświetlacza tylko raz w przypadku każdej ramki wejściowej. Aby zobaczyć przykład, otwórz klasy
CameraSourcePreview
iGraphicOverlay
w przykładowej aplikacji krótkiego wprowadzenia. -
Jeśli używasz interfejsu Camera2 API, rób zdjęcia w formacie
ImageFormat.YUV_420_888
.Jeśli używasz starszej wersji interfejsu Camera API, rób zdjęcia w formacie
ImageFormat.NV21
.