La versione 22.0.2 della libreria firebase-ml-model-interpreter
introduce un nuovo metodogetLatestModelFile()
, che recupera la posizione sul dispositivo dei modelli personalizzati. Puoi utilizzare questo metodo per creare direttamente un oggetto Interpreter
di TensorFlow Lite, che puoi utilizzare al posto del wrapper FirebaseModelInterpreter
.
In futuro, questo è l'approccio preferito. Poiché la versione dell'interprete di TensorFlow Lite non è più accoppiata alla versione della libreria Firebase, hai più flessibilità per eseguire l'upgrade alle nuove versioni di TensorFlow Lite quando vuoi o utilizzare più facilmente le build di TensorFlow Lite personalizzate.
Questa pagina mostra come eseguire la migrazione dall'utilizzo di FirebaseModelInterpreter
a
Interpreter
di TensorFlow Lite.
1. Aggiorna le dipendenze del progetto
Aggiorna le dipendenze del progetto in modo da includere la versione 22.0.2 della libreria firebase-ml-model-interpreter
(o successiva) e la libreria tensorflow-lite
:
Prima
implementation("com.google.firebase:firebase-ml-model-interpreter:22.0.1")
Dopo
implementation("com.google.firebase:firebase-ml-model-interpreter:22.0.2")
implementation("org.tensorflow:tensorflow-lite:2.0.0")
2. Creare un interprete TensorFlow Lite anziché FirebaseModelInterpreter
Anziché creare un FirebaseModelInterpreter
, recupera la posizione del modello sul dispositivo con getLatestModelFile()
e utilizzala per creare un Interpreter
di TensorFlow Lite.
Prima
Kotlin+KTX
val remoteModel = FirebaseCustomRemoteModel.Builder("your_model").build()
val options = FirebaseModelInterpreterOptions.Builder(remoteModel).build()
val interpreter = FirebaseModelInterpreter.getInstance(options)
Java
FirebaseCustomRemoteModel remoteModel =
new FirebaseCustomRemoteModel.Builder("your_model").build();
FirebaseModelInterpreterOptions options =
new FirebaseModelInterpreterOptions.Builder(remoteModel).build();
FirebaseModelInterpreter interpreter = FirebaseModelInterpreter.getInstance(options);
Dopo
Kotlin+KTX
val remoteModel = FirebaseCustomRemoteModel.Builder("your_model").build()
FirebaseModelManager.getInstance().getLatestModelFile(remoteModel)
.addOnCompleteListener { task ->
val modelFile = task.getResult()
if (modelFile != null) {
// Instantiate an org.tensorflow.lite.Interpreter object.
interpreter = Interpreter(modelFile)
}
}
Java
FirebaseCustomRemoteModel remoteModel =
new FirebaseCustomRemoteModel.Builder("your_model").build();
FirebaseModelManager.getInstance().getLatestModelFile(remoteModel)
.addOnCompleteListener(new OnCompleteListener<File>() {
@Override
public void onComplete(@NonNull Task<File> task) {
File modelFile = task.getResult();
if (modelFile != null) {
// Instantiate an org.tensorflow.lite.Interpreter object.
Interpreter interpreter = new Interpreter(modelFile);
}
}
});
3. Aggiorna il codice di preparazione di input e output
Con FirebaseModelInterpreter
, puoi specificare le forme di input e output del modello passando un oggetto FirebaseModelInterpreter
all'interprete quando lo esegui.FirebaseModelInputOutputOptions
Per l'interprete TensorFlow Lite, alloca invece oggetti ByteBuffer
con le dimensioni giuste per l'input e l'output del modello.
Ad esempio, se il modello ha una forma di input di [1 224 224 3] valori float
e una forma di output di [1 1000] valori float
, apporta queste modifiche:
Prima
Kotlin+KTX
val inputOutputOptions = FirebaseModelInputOutputOptions.Builder()
.setInputFormat(0, FirebaseModelDataType.FLOAT32, intArrayOf(1, 224, 224, 3))
.setOutputFormat(0, FirebaseModelDataType.FLOAT32, intArrayOf(1, 1000))
.build()
val input = ByteBuffer.allocateDirect(224*224*3*4).order(ByteOrder.nativeOrder())
// Then populate with input data.
val inputs = FirebaseModelInputs.Builder()
.add(input)
.build()
interpreter.run(inputs, inputOutputOptions)
.addOnSuccessListener { outputs ->
// ...
}
.addOnFailureListener {
// Task failed with an exception.
// ...
}
Java
FirebaseModelInputOutputOptions inputOutputOptions =
new FirebaseModelInputOutputOptions.Builder()
.setInputFormat(0, FirebaseModelDataType.FLOAT32, new int[]{1, 224, 224, 3})
.setOutputFormat(0, FirebaseModelDataType.FLOAT32, new int[]{1, 1000})
.build();
float[][][][] input = new float[1][224][224][3];
// Then populate with input data.
FirebaseModelInputs inputs = new FirebaseModelInputs.Builder()
.add(input)
.build();
interpreter.run(inputs, inputOutputOptions)
.addOnSuccessListener(
new OnSuccessListener<FirebaseModelOutputs>() {
@Override
public void onSuccess(FirebaseModelOutputs result) {
// ...
}
})
.addOnFailureListener(
new OnFailureListener() {
@Override
public void onFailure(@NonNull Exception e) {
// Task failed with an exception
// ...
}
});
Dopo
Kotlin+KTX
val inBufferSize = 1 * 224 * 224 * 3 * java.lang.Float.SIZE / java.lang.Byte.SIZE
val inputBuffer = ByteBuffer.allocateDirect(inBufferSize).order(ByteOrder.nativeOrder())
// Then populate with input data.
val outBufferSize = 1 * 1000 * java.lang.Float.SIZE / java.lang.Byte.SIZE
val outputBuffer = ByteBuffer.allocateDirect(outBufferSize).order(ByteOrder.nativeOrder())
interpreter.run(inputBuffer, outputBuffer)
Java
int inBufferSize = 1 * 224 * 224 * 3 * java.lang.Float.SIZE / java.lang.Byte.SIZE;
ByteBuffer inputBuffer =
ByteBuffer.allocateDirect(inBufferSize).order(ByteOrder.nativeOrder());
// Then populate with input data.
int outBufferSize = 1 * 1000 * java.lang.Float.SIZE / java.lang.Byte.SIZE;
ByteBuffer outputBuffer =
ByteBuffer.allocateDirect(outBufferSize).order(ByteOrder.nativeOrder());
interpreter.run(inputBuffer, outputBuffer);
4. Aggiorna il codice per la gestione dell'output
Infine, invece di ottenere l'output del modello con il metodo getOutput()
dell'oggetto FirebaseModelOutputs
, converti l'output ByteBuffer
nella struttura più comoda per il tuo caso d'uso.
Ad esempio, se stai eseguendo la classificazione, potresti apportare modifiche come quelle riportate di seguito:
Prima
Kotlin+KTX
val output = result.getOutput(0)
val probabilities = output[0]
try {
val reader = BufferedReader(InputStreamReader(assets.open("custom_labels.txt")))
for (probability in probabilities) {
val label: String = reader.readLine()
println("$label: $probability")
}
} catch (e: IOException) {
// File not found?
}
Java
float[][] output = result.getOutput(0);
float[] probabilities = output[0];
try {
BufferedReader reader = new BufferedReader(
new InputStreamReader(getAssets().open("custom_labels.txt")));
for (float probability : probabilities) {
String label = reader.readLine();
Log.i(TAG, String.format("%s: %1.4f", label, probability));
}
} catch (IOException e) {
// File not found?
}
Dopo
Kotlin+KTX
modelOutput.rewind()
val probabilities = modelOutput.asFloatBuffer()
try {
val reader = BufferedReader(
InputStreamReader(assets.open("custom_labels.txt")))
for (i in probabilities.capacity()) {
val label: String = reader.readLine()
val probability = probabilities.get(i)
println("$label: $probability")
}
} catch (e: IOException) {
// File not found?
}
Java
modelOutput.rewind();
FloatBuffer probabilities = modelOutput.asFloatBuffer();
try {
BufferedReader reader = new BufferedReader(
new InputStreamReader(getAssets().open("custom_labels.txt")));
for (int i = 0; i < probabilities.capacity(); i++) {
String label = reader.readLine();
float probability = probabilities.get(i);
Log.i(TAG, String.format("%s: %1.4f", label, probability));
}
} catch (IOException e) {
// File not found?
}