بعد تدريب باستخدام AutoML Vision Edge، يمكنك استخدامه في تطبيقك لتصنيف الصور.
قبل البدء
- إذا لم تكن قد فعلت ذلك بالفعل، إضافة Firebase إلى مشروع Android
- إضافة الموارد التابعة لمكتبات ML Kit على Android إلى الوحدة
(على مستوى التطبيق) ملف Gradle (عادةً
app/build.gradle
):apply plugin: 'com.android.application' apply plugin: 'com.google.gms.google-services' dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:24.0.3' implementation 'com.google.firebase:firebase-ml-vision-automl:18.0.5' }
1- تحميل النموذج
تشغّل مجموعة أدوات تعلُّم الآلة النماذج التي يتم إنشاؤها تلقائيًا باستخدام تعلُّم الآلة على الجهاز. ومع ذلك، يمكنك يمكنك ضبط أداة تعلُّم الآلة لتحميل نموذجك عن بُعد من Firebase أو أو كليهما معًا.
ويمكنك تعديل النموذج بدون طرحه من خلال استضافة النموذج على Firebase. إصدار جديد من التطبيق، ويمكنك استخدام Remote Config وA/B Testing لإجراء ما يلي: تعرض نماذج مختلفة ديناميكيًا لمجموعات مختلفة من المستخدمين.
إذا اخترت توفير النموذج من خلال استضافته باستخدام Firebase فقط، وليس حزمة التطبيق مع التطبيق، يمكنك تقليل حجم التنزيل الأولي لتطبيقك. ومع ذلك، يُرجى الأخذ في الاعتبار أنه إذا لم يتم إدراج النموذج مع تطبيقك، لن تتوفّر الوظائف المتعلّقة بالطراز إلى أن ينزِّل تطبيقك لأول مرة.
يمكنك ضمان ميزات تعلُّم الآلة في تطبيقك من خلال دمج نموذجك مع تطبيقك. لا يزال يعمل في حال عدم توفُّر النموذج المستضاف على Firebase.
ضبط مصدر نموذج مستضاف على Firebase
لاستخدام النموذج المستضاف عن بُعد، أنشئ كائن FirebaseAutoMLRemoteModel
،
لتحديد الاسم الذي عينته للنموذج عند نشره:
Java
// Specify the name you assigned in the Firebase console.
FirebaseAutoMLRemoteModel remoteModel =
new FirebaseAutoMLRemoteModel.Builder("your_remote_model").build();
Kotlin+KTX
// Specify the name you assigned in the Firebase console.
val remoteModel = FirebaseAutoMLRemoteModel.Builder("your_remote_model").build()
بعد ذلك، ابدأ مهمة تنزيل النموذج، مع تحديد الشروط التي الذي تريد السماح بتنزيله إذا لم يكن الطراز موجودًا على الجهاز، أو إذا كان طرازًا أحدث إتاحة إصدار معين من النموذج، فإن المهمة ستنزّل بشكل غير متزامن النموذج من Firebase:
Java
FirebaseModelDownloadConditions conditions = new FirebaseModelDownloadConditions.Builder()
.requireWifi()
.build();
FirebaseModelManager.getInstance().download(remoteModel, conditions)
.addOnCompleteListener(new OnCompleteListener<Void>() {
@Override
public void onComplete(@NonNull Task<Void> task) {
// Success.
}
});
Kotlin+KTX
val conditions = FirebaseModelDownloadConditions.Builder()
.requireWifi()
.build()
FirebaseModelManager.getInstance().download(remoteModel, conditions)
.addOnCompleteListener {
// Success.
}
تبدأ العديد من التطبيقات مهمة التنزيل في رمز التهيئة الخاص بها، ولكن يمكنك القيام بذلك في أي وقت قبل أن تحتاج إلى استخدام النموذج.
إعداد مصدر نموذج محلي
لدمج النموذج مع تطبيقك:
- يمكنك استخراج النموذج وبياناته الوصفية من أرشيف ZIP الذي نزّلته. من وحدة تحكّم "Firebase". ننصحك باستخدام الملفات أثناء تنزيلها. بدون تعديل (بما في ذلك أسماء الملفات).
-
ضمِّن النموذج وملفات البيانات الوصفية الخاصة به في حزمة التطبيق:
- إذا لم يكن لديك مجلد مواد عرض في مشروعك، أنشئ واحدًا تلو الآخر
النقر بزر الماوس الأيمن على المجلد
app/
، ثم النقر على جديد > مجلد > مجلد مواد العرض: - أنشِئ مجلدًا فرعيًا ضمن مجلد "مواد العرض" يحتوي على النموذج. الملفات.
- انسخ الملفات
model.tflite
وdict.txt
وmanifest.json
إلى المجلد الفرعي (يجب أن تكون جميع الملفات الثلاثة في المجلد نفسه).
- إذا لم يكن لديك مجلد مواد عرض في مشروعك، أنشئ واحدًا تلو الآخر
النقر بزر الماوس الأيمن على المجلد
- أضِف ما يلي إلى ملف
build.gradle
لتطبيقك للتأكّد من ذلك. لا تضغط Gradle ملف النموذج عند إنشاء التطبيق: سيتم تضمين ملف النموذج في حزمة التطبيق وسيكون متاحًا في مجموعة أدوات تعلُّم الآلة. كمادة عرض أوليةandroid { // ... aaptOptions { noCompress "tflite" } }
- إنشاء عنصر
FirebaseAutoMLLocalModel
، لتحديد المسار إلى بيان النموذج الملف:Java
FirebaseAutoMLLocalModel localModel = new FirebaseAutoMLLocalModel.Builder() .setAssetFilePath("manifest.json") .build();
Kotlin+KTX
val localModel = FirebaseAutoMLLocalModel.Builder() .setAssetFilePath("manifest.json") .build()
إنشاء مصنِّف للصور من نموذجك
بعد ضبط مصادر النماذج، يمكنك إنشاء FirebaseVisionImageLabeler
.
كائن من إحداهما.
وإذا كان لديك نموذج مجمّع محليًا فقط، ما عليك سوى إنشاء مصنِّف من
عنصر "FirebaseAutoMLLocalModel
" وضبط الحد الأدنى لنتيجة الثقة
التي تريد طلبها (راجع تقييم النموذج):
Java
FirebaseVisionImageLabeler labeler;
try {
FirebaseVisionOnDeviceAutoMLImageLabelerOptions options =
new FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel)
.setConfidenceThreshold(0.0f) // Evaluate your model in the Firebase console
// to determine an appropriate value.
.build();
labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options);
} catch (FirebaseMLException e) {
// ...
}
Kotlin+KTX
val options = FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel)
.setConfidenceThreshold(0) // Evaluate your model in the Firebase console
// to determine an appropriate value.
.build()
val labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options)
فإذا كان لديك نموذج مستضاف عن بُعد، فعليك التحقق من أنه
تم تنزيله قبل تشغيله. يمكنك التحقّق من حالة تنزيل النموذج
باستخدام طريقة isModelDownloaded()
لمدير النموذج.
وما عليك سوى تأكيد هذا قبل تشغيل المُصنِّف، إذا لكل من نموذج مُستضاف عن بُعد ونموذج مُجمع محليًا، فقد تجعل إجراء هذا الفحص عند إنشاء مثيل مصنف الصور: إنشاء من النموذج البعيد إذا تم تنزيله، ومن النموذج المحلي نموذج بخلاف ذلك.
Java
FirebaseModelManager.getInstance().isModelDownloaded(remoteModel)
.addOnSuccessListener(new OnSuccessListener<Boolean>() {
@Override
public void onSuccess(Boolean isDownloaded) {
FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder optionsBuilder;
if (isDownloaded) {
optionsBuilder = new FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(remoteModel);
} else {
optionsBuilder = new FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel);
}
FirebaseVisionOnDeviceAutoMLImageLabelerOptions options = optionsBuilder
.setConfidenceThreshold(0.0f) // Evaluate your model in the Firebase console
// to determine an appropriate threshold.
.build();
FirebaseVisionImageLabeler labeler;
try {
labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options);
} catch (FirebaseMLException e) {
// Error.
}
}
});
Kotlin+KTX
FirebaseModelManager.getInstance().isModelDownloaded(remoteModel)
.addOnSuccessListener { isDownloaded ->
val optionsBuilder =
if (isDownloaded) {
FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(remoteModel)
} else {
FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel)
}
// Evaluate your model in the Firebase console to determine an appropriate threshold.
val options = optionsBuilder.setConfidenceThreshold(0.0f).build()
val labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options)
}
وإذا كان لديك نموذج مستضاف عن بُعد فقط، يجب إيقاف النموذج المرتبط بالنموذج
وظائف - على سبيل المثال، الاستخدام الرمادي أو إخفاء جزء من واجهة المستخدم - حتى
التأكد من تنزيل النموذج. يمكنك إجراء ذلك من خلال إرفاق مستمع
إلى طريقة download()
لمدير النموذج:
Java
FirebaseModelManager.getInstance().download(remoteModel, conditions)
.addOnSuccessListener(new OnSuccessListener<Void>() {
@Override
public void onSuccess(Void v) {
// Download complete. Depending on your app, you could enable
// the ML feature, or switch from the local model to the remote
// model, etc.
}
});
Kotlin+KTX
FirebaseModelManager.getInstance().download(remoteModel, conditions)
.addOnCompleteListener {
// Download complete. Depending on your app, you could enable the ML
// feature, or switch from the local model to the remote model, etc.
}
2- تحضير صورة الإدخال
بعد ذلك، أنشِئ كائن FirebaseVisionImage
لكل صورة تريد تصنيفها.
باستخدام أحد الخيارات الموضحة في هذا القسم وتمريره إلى مثيل
FirebaseVisionImageLabeler
(الموضّحة في القسم التالي).
يمكنك إنشاء كائن FirebaseVisionImage
من كائن media.Image
،
على الجهاز أو مصفوفة بايت أو كائن Bitmap
:
-
لإنشاء عنصر
FirebaseVisionImage
من كائنmedia.Image
، مثل عند التقاط صورة من كاميرا الجهاز، يُرجى تمرير كائنmedia.Image
تدوير إلىFirebaseVisionImage.fromMediaImage()
.إذا كنت تستخدم CameraX و
OnImageCapturedListener
تحتسب صفوفImageAnalysis.Analyzer
قيمة عرض الإعلانات بالتناوب. لك، لذا ما عليك سوى تحويل الدوران إلى إحدى أدوات تعلّم الآلةROTATION_
ثابت قبل إجراء الطلبFirebaseVisionImage.fromMediaImage()
:Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
إذا لم تكن تستخدم مكتبة كاميرا تمنحك تدوير الصورة، يمكنك من دوران الجهاز واتجاه الكاميرا جهاز الاستشعار في الجهاز:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
بعد ذلك، مرِّر الكائن
media.Image
قيمة التدوير إلىFirebaseVisionImage.fromMediaImage()
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- لإنشاء كائن
FirebaseVisionImage
من معرّف موارد منتظم (URI) لملف، مرِّر سياق التطبيق ومعرّف الموارد المنتظم (URI) للملفFirebaseVisionImage.fromFilePath()
يكون ذلك مفيدًا عندما يجب استخدام هدفACTION_GET_CONTENT
لتطلب من المستخدم الاختيار. صورة من تطبيق المعرض الخاص به.Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- لإنشاء عنصر
FirebaseVisionImage
منByteBuffer
أو صفيف بايت، احسب الصورة أولاً تدوير كما هو موضح أعلاه لإدخالmedia.Image
.بعد ذلك، يمكنك إنشاء كائن
FirebaseVisionImageMetadata
. يتضمن ارتفاع الصورة وعرضها وتنسيق ترميز الألوان لها وتدوير:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
استخدم المخزن المؤقت أو الصفيفة وكائن البيانات الوصفية لإنشاء كائن
FirebaseVisionImage
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
- لإنشاء عنصر
FirebaseVisionImage
من كائنBitmap
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
مستقيمًا، دون الحاجة إلى دوران إضافي.
3- تشغيل أداة تصنيف الصور
لتصنيف العناصر في صورة، مرِّر كائن FirebaseVisionImage
إلى
طريقة processImage()
لـ FirebaseVisionImageLabeler
.
Java
labeler.processImage(image)
.addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionImageLabel>>() {
@Override
public void onSuccess(List<FirebaseVisionImageLabel> labels) {
// Task completed successfully
// ...
}
})
.addOnFailureListener(new OnFailureListener() {
@Override
public void onFailure(@NonNull Exception e) {
// Task failed with an exception
// ...
}
});
Kotlin+KTX
labeler.processImage(image)
.addOnSuccessListener { labels ->
// Task completed successfully
// ...
}
.addOnFailureListener { e ->
// Task failed with an exception
// ...
}
في حال نجاح تصنيف الصور، مصفوفة من FirebaseVisionImageLabel
عنصر
يتم تمريرها إلى المستمع الناجح. من كل كائن، يمكنك الحصول على
معلومات حول ميزة تم التعرف عليها في الصورة.
على سبيل المثال:
Java
for (FirebaseVisionImageLabel label: labels) {
String text = label.getText();
float confidence = label.getConfidence();
}
Kotlin+KTX
for (label in labels) {
val text = label.text
val confidence = label.confidence
}
نصائح لتحسين الأداء في الوقت الفعلي
- التحكُّم في المكالمات الواردة إلى أداة الرصد. إذا أصبح إطار فيديو جديد المتاح أثناء تشغيل أداة الكشف، أفلِت الإطار.
- إذا كنت تستخدم ناتج أداة الكشف لتراكب الرسومات على الصورة المدخلة، والحصول أولاً على النتيجة من ML Kit، ثم عرض الصورة وتراكبها في خطوة واحدة. ومن خلال القيام بذلك، يمكنك العرض على سطح الشاشة مرة واحدة فقط لكل إطار إدخال
-
في حال استخدام واجهة برمجة التطبيقات Camera2 API، يمكنك التقاط الصور في تنسيق
ImageFormat.YUV_420_888
إذا كنت تستخدم واجهة برمجة التطبيقات للكاميرا القديمة، يمكنك التقاط الصور في تنسيق
ImageFormat.NV21