Google 致力于为黑人社区推动种族平等。查看具体举措

จดจำข้อความในรูปภาพได้อย่างปลอดภัยด้วย Cloud Vision โดยใช้ Firebase Auth และฟังก์ชั่นบน iOS

ในการเรียก Google Cloud API จากแอปของคุณ คุณต้องสร้าง REST API ระดับกลางที่จัดการการให้สิทธิ์และปกป้องค่าลับ เช่น คีย์ API จากนั้นคุณจะต้องเขียนโค้ดในแอพมือถือของคุณเพื่อตรวจสอบสิทธิ์และสื่อสารกับบริการระดับกลางนี้

วิธีหนึ่งในการสร้าง REST API นี้คือการใช้ Firebase Authentication and Functions ซึ่งให้เกตเวย์แบบไร้เซิร์ฟเวอร์ที่มีการจัดการไปยัง Google Cloud API ที่จัดการการตรวจสอบสิทธิ์ และสามารถเรียกได้จากแอปบนอุปกรณ์เคลื่อนที่ด้วย SDK ที่สร้างไว้ล่วงหน้า

คู่มือนี้สาธิตวิธีใช้เทคนิคนี้เพื่อเรียก Cloud Vision API จากแอปของคุณ วิธีนี้จะอนุญาตให้ผู้ใช้ที่ผ่านการตรวจสอบสิทธิ์ทั้งหมดเข้าถึงบริการที่เรียกเก็บเงิน Cloud Vision ผ่านโปรเจ็กต์ Cloud ของคุณ ดังนั้นให้พิจารณาว่ากลไกการตรวจสอบสิทธิ์นี้เพียงพอสำหรับกรณีการใช้งานของคุณหรือไม่ก่อนดำเนินการต่อ

ก่อนจะเริ่ม

กำหนดค่าโครงการของคุณ

  1. หากคุณยังไม่ได้เพิ่ม Firebase ในแอปของคุณ ให้ทำตามขั้นตอนในคู่มือ การเริ่มต้นใช้งาน
  2. รวม Firebase ใน Podfile ของคุณ: หลังจากที่คุณติดตั้งหรืออัปเดต Pod ของโปรเจ็กต์แล้ว อย่าลืมเปิดโปรเจ็กต์ Xcode โดยใช้ . .xcworkspace
  3. ในแอปของคุณ ให้นำเข้า Firebase:

    Swift

    import Firebase

    วัตถุประสงค์-C

    @import Firebase;
  4. หากคุณยังไม่ได้เปิดใช้งาน API แบบ Cloud-based สำหรับโปรเจ็กต์ของคุณ ให้ดำเนินการดังนี้:

    1. เปิดหน้า Firebase ML APIs ของคอนโซล Firebase
    2. หากคุณยังไม่ได้อัปเกรดโปรเจ็กต์ของคุณเป็นแผนราคา Blaze ให้คลิก อัปเกรด เพื่อดำเนินการดังกล่าว (คุณจะได้รับแจ้งให้อัปเกรดเฉพาะเมื่อโปรเจ็กต์ของคุณไม่อยู่ในแผน Blaze)

      เฉพาะโปรเจ็กต์ระดับ Blaze เท่านั้นที่สามารถใช้ API แบบคลาวด์ได้

    3. หากยังไม่ได้เปิดใช้ งาน API แบบคลาวด์ ให้คลิก เปิดใช้งาน API แบบคลาวด์
  5. กำหนดค่าคีย์ Firebase API ที่มีอยู่ของคุณเพื่อไม่อนุญาตให้เข้าถึง Cloud Vision API:
    1. เปิดหน้า ข้อมูลประจำตัว ของคอนโซลระบบคลาวด์
    2. สำหรับคีย์ API แต่ละรายการในรายการ ให้เปิดมุมมองการแก้ไข และในส่วนการจำกัดคีย์ ให้เพิ่ม API ที่มีอยู่ ทั้งหมดยกเว้น Cloud Vision API ลงในรายการ

ปรับใช้ฟังก์ชันที่เรียกได้

ขั้นต่อไป ปรับใช้ Cloud Function ที่คุณจะใช้เพื่อเชื่อมโยงแอปของคุณและ Cloud Vision API ที่เก็บ functions-samples มีตัวอย่างที่คุณสามารถใช้ได้

ตามค่าเริ่มต้น การเข้าถึง Cloud Vision API ผ่านฟังก์ชันนี้จะอนุญาตให้เฉพาะผู้ใช้แอปที่ตรวจสอบสิทธิ์เข้าถึง Cloud Vision API เท่านั้น คุณสามารถปรับเปลี่ยนฟังก์ชันสำหรับข้อกำหนดต่างๆ ได้

ในการปรับใช้ฟังก์ชัน:

  1. โคลนหรือดาวน์โหลด ฟังก์ชั่นตัวอย่าง repo และเปลี่ยนเป็นไดเร็กทอรี vision-annotate-image :
    git clone https://github.com/firebase/functions-samples
    cd vision-annotate-image
    
  2. ติดตั้งการพึ่งพา:
    cd functions
    npm install
    cd ..
    
  3. หากคุณไม่มี Firebase CLI ให้ ติดตั้ง
  4. เริ่มต้นโปรเจ็กต์ Firebase ในไดเร็กทอรี vision-annotate-image เมื่อได้รับแจ้ง ให้เลือกโครงการของคุณในรายการ
    firebase init
  5. ปรับใช้ฟังก์ชัน:
    firebase deploy --only functions:annotateImage

เพิ่ม Firebase Auth ในแอปของคุณ

ฟังก์ชัน callable ที่ปรับใช้ด้านบนจะปฏิเสธคำขอใดๆ จากผู้ใช้ที่ไม่ผ่านการตรวจสอบสิทธิ์ของแอปของคุณ หากยังไม่ได้ดำเนินการ คุณจะต้อง เพิ่ม Firebase Auth ในแอปของคุณ

เพิ่มการพึ่งพาที่จำเป็นให้กับแอปของคุณ

  1. เพิ่มการพึ่งพาสำหรับไลบรารีฟังก์ชัน Firebase ไปยัง Podfile ของคุณ:
    pod 'Firebase/Functions'
  2. ติดตั้งการพึ่งพา:
    pod install

ตอนนี้คุณพร้อมที่จะเริ่มจดจำข้อความในภาพแล้ว

1. เตรียมภาพอินพุต

ในการเรียก Cloud Vision รูปภาพต้องได้รับการจัดรูปแบบเป็นสตริงที่เข้ารหัส base64 ในการประมวลผล UIImage :

Swift

guard let imageData = uiImage.jpegData(compressionQuality: 1.0f) else { return }
let base64encodedImage = imageData.base64EncodedString()

วัตถุประสงค์-C

NSData *imageData = UIImageJPEGRepresentation(uiImage, 1.0f);
NSString *base64encodedImage =
  [imageData base64EncodedStringWithOptions:NSDataBase64Encoding76CharacterLineLength];

2. เรียกใช้ฟังก์ชันที่เรียกได้เพื่อจดจำข้อความ

หากต้องการจดจำจุดสังเกตในรูปภาพ ให้เรียกใช้ฟังก์ชันที่เรียกได้ โดยส่ง คำขอ JSON Cloud Vision

  1. ขั้นแรก เริ่มต้นอินสแตนซ์ของ Cloud Functions:

    Swift

    lazy var functions = Functions.functions()
    

    วัตถุประสงค์-C

    @property(strong, nonatomic) FIRFunctions *functions;
    
  2. สร้างคำขอ Cloud Vision API รองรับการตรวจจับข้อความสอง ประเภท : TEXT_DETECTION และ DOCUMENT_TEXT_DETECTION ดู เอกสาร OCR ของ Cloud Vision สำหรับความแตกต่างระหว่างกรณีการใช้งานทั้งสอง

    Swift

    let requestData = [
      "image": ["content": base64encodedImage],
      "features": ["type": "TEXT_DETECTION"],
      "imageContext": ["languageHints": ["en"]]
    ]
    

    วัตถุประสงค์-C

    NSDictionary *requestData = @{
      @"image": @{@"content": base64encodedImage},
      @"features": @{@"type": @"TEXT_DETECTION"},
      @"imageContext": @{@"languageHints": @[@"en"]}
    };
    
  3. ในที่สุด เรียกใช้ฟังก์ชัน:

    Swift

    functions.httpsCallable("annotateImage").call(requestData) { (result, error) in
      if let error = error as NSError? {
        if error.domain == FunctionsErrorDomain {
          let code = FunctionsErrorCode(rawValue: error.code)
          let message = error.localizedDescription
          let details = error.userInfo[FunctionsErrorDetailsKey]
        }
        // ...
      }
      // Function completed succesfully
    }
    

    วัตถุประสงค์-C

    [[_functions HTTPSCallableWithName:@"annotateImage"]
                              callWithObject:requestData
                                  completion:^(FIRHTTPSCallableResult * _Nullable result, NSError * _Nullable error) {
            if (error) {
              if (error.domain == FIRFunctionsErrorDomain) {
                FIRFunctionsErrorCode code = error.code;
                NSString *message = error.localizedDescription;
                NSObject *details = error.userInfo[FIRFunctionsErrorDetailsKey];
              }
              // ...
            }
            // Function completed succesfully
            // Get information about labeled objects
    
          }];
    

3. แยกข้อความจากบล็อกของข้อความที่รู้จัก

หากการดำเนินการรู้จำข้อความสำเร็จ การตอบกลับ JSON ของ BatchAnnotateImagesResponse จะถูกส่งคืนในผลลัพธ์ของงาน คำอธิบายประกอบข้อความสามารถพบได้ในวัตถุ fullTextAnnotation

คุณสามารถรับข้อความที่รู้จักเป็นสตริงในช่อง text ตัวอย่างเช่น:

Swift

guard let annotation = (result?.data as? [String: Any])?["fullTextAnnotation"] as? [String: Any] else { return }
print("%nComplete annotation:")
let text = annotation["text"] as? String ?? ""
print("%n\(text)")

วัตถุประสงค์-C

NSDictionary *annotation = result.data[@"fullTextAnnotation"];
if (!annotation) { return; }
NSLog(@"\nComplete annotation:");
NSLog(@"\n%@", annotation[@"text"]);

คุณยังสามารถรับข้อมูลเฉพาะสำหรับภูมิภาคของรูปภาพได้อีกด้วย สำหรับแต่ละ block paragraph word และ symbol คุณสามารถรับข้อความที่รู้จักในภูมิภาคและพิกัดขอบเขตของภูมิภาค ตัวอย่างเช่น:

Swift

guard let pages = annotation["pages"] as? [[String: Any]] else { return }
for page in pages {
var pageText = ""
guard let blocks = page["blocks"] as? [[String: Any]] else { continue }
for block in blocks {
    var blockText = ""
    guard let paragraphs = block["paragraphs"] as? [[String: Any]] else { continue }
    for paragraph in paragraphs {
    var paragraphText = ""
    guard let words = paragraph["words"] as? [[String: Any]] else { continue }
    for word in words {
        var wordText = ""
        guard let symbols = word["symbols"] as? [[String: Any]] else { continue }
        for symbol in symbols {
        let text = symbol["text"] as? String ?? ""
        let confidence = symbol["confidence"] as? Float ?? 0.0
        wordText += text
        print("Symbol text: \(text) (confidence: \(confidence)%n")
        }
        let confidence = word["confidence"] as? Float ?? 0.0
        print("Word text: \(wordText) (confidence: \(confidence)%n%n")
        let boundingBox = word["boundingBox"] as? [Float] ?? [0.0, 0.0, 0.0, 0.0]
        print("Word bounding box: \(boundingBox.description)%n")
        paragraphText += wordText
    }
    print("%nParagraph: %n\(paragraphText)%n")
    let boundingBox = paragraph["boundingBox"] as? [Float] ?? [0.0, 0.0, 0.0, 0.0]
    print("Paragraph bounding box: \(boundingBox)%n")
    let confidence = paragraph["confidence"] as? Float ?? 0.0
    print("Paragraph Confidence: \(confidence)%n")
    blockText += paragraphText
    }
    pageText += blockText
}

วัตถุประสงค์-C

for (NSDictionary *page in annotation[@"pages"]) {
  NSMutableString *pageText = [NSMutableString new];
  for (NSDictionary *block in page[@"blocks"]) {
    NSMutableString *blockText = [NSMutableString new];
    for (NSDictionary *paragraph in block[@"paragraphs"]) {
      NSMutableString *paragraphText = [NSMutableString new];
      for (NSDictionary *word in paragraph[@"words"]) {
        NSMutableString *wordText = [NSMutableString new];
        for (NSDictionary *symbol in word[@"symbols"]) {
          NSString *text = symbol[@"text"];
          [wordText appendString:text];
          NSLog(@"Symbol text: %@ (confidence: %@\n", text, symbol[@"confidence"]);
        }
        NSLog(@"Word text: %@ (confidence: %@\n\n", wordText, word[@"confidence"]);
        NSLog(@"Word bounding box: %@\n", word[@"boundingBox"]);
        [paragraphText appendString:wordText];
      }
      NSLog(@"\nParagraph: \n%@\n", paragraphText);
      NSLog(@"Paragraph bounding box: %@\n", paragraph[@"boundingBox"]);
      NSLog(@"Paragraph Confidence: %@\n", paragraph[@"confidence"]);
      [blockText appendString:paragraphText];
    }
    [pageText appendString:blockText];
  }
}