Помечайте изображения с помощью модели, обученной AutoML, на платформах Apple.

После обучения собственной модели с помощью AutoML Vision Edge вы можете использовать ее в своем приложении для разметки изображений.

Существует два способа интеграции моделей, обученных с помощью AutoML Vision Edge. Вы можете упаковать модель, скопировав файлы модели в свой проект Xcode, или вы можете динамически загрузить ее из Firebase.

Варианты комплектации моделей
Встроено в ваше приложение
  • Модель является частью комплекта.
  • Данная модель доступна сразу же, даже когда устройство Apple находится в автономном режиме.
  • Нет необходимости в проекте Firebase.
Размещено на Firebase
  • Разместите модель, загрузив её в Firebase Machine Learning.
  • Уменьшает размер пакета приложения.
  • Модель загружается по запросу.
  • Обновляйте модель приложения, не переиздавая его.
  • Простое A/B-тестирование с помощью Firebase Remote Config
  • Требуется проект Firebase.

Прежде чем начать

  1. Включите библиотеки ML Kit в свой Podfile:

    Для включения модели в ваше приложение:

    pod 'GoogleMLKit/ImageLabelingCustom'
    

    Для динамической загрузки модели из Firebase добавьте зависимость LinkFirebase :

    pod 'GoogleMLKit/ImageLabelingCustom'
    pod 'GoogleMLKit/LinkFirebase'
    
  2. После установки или обновления Pods вашего проекта откройте проект Xcode, используя его .xcworkspace . ML Kit поддерживается в Xcode версии 12.2 и выше.

  3. Если вы хотите загрузить модель , убедитесь, что вы добавили Firebase в свой проект Android , если вы еще этого не сделали. Это не требуется при сборке модели.

1. Загрузите модель.

Настройте локальный источник модели.

Чтобы включить модель в ваше приложение:

  1. Извлеките модель и её метаданные из загруженного ZIP-архива из консоли Firebase в папку:

    your_model_directory
      |____dict.txt
      |____manifest.json
      |____model.tflite
    

    Все три файла должны находиться в одной папке. Мы рекомендуем использовать файлы в том виде, в котором вы их скачали, без изменений (включая имена файлов).

  2. Скопируйте папку в свой проект Xcode, обязательно выбрав при этом опцию «Создать ссылки на папку» . Файл модели и метаданные будут включены в пакет приложения и станут доступны для ML Kit.

  3. Создайте объект LocalModel , указав путь к файлу манифеста модели:

    Быстрый

    guard let manifestPath = Bundle.main.path(
        forResource: "manifest",
        ofType: "json",
        inDirectory: "your_model_directory"
    ) else { return true }
    let localModel = LocalModel(manifestPath: manifestPath)
    

    Objective-C

    NSString *manifestPath =
        [NSBundle.mainBundle pathForResource:@"manifest"
                                      ofType:@"json"
                                 inDirectory:@"your_model_directory"];
    MLKLocalModel *localModel =
        [[MLKLocalModel alloc] initWithManifestPath:manifestPath];
    

Настройте источник модели, размещенный в Firebase.

Для использования удаленно размещенной модели создайте объект CustomRemoteModel , указав имя, которое вы присвоили модели при ее публикации:

Быстрый

// Initialize the model source with the name you assigned in
// the Firebase console.
let remoteModelSource = FirebaseModelSource(name: "your_remote_model")
let remoteModel = CustomRemoteModel(remoteModelSource: remoteModelSource)

Objective-C

// Initialize the model source with the name you assigned in
// the Firebase console.
MLKFirebaseModelSource *firebaseModelSource =
    [[MLKFirebaseModelSource alloc] initWithName:@"your_remote_model"];
MLKCustomRemoteModel *remoteModel =
    [[MLKCustomRemoteModel alloc] initWithRemoteModelSource:firebaseModelSource];

Затем запустите задачу загрузки модели, указав условия, при которых вы хотите разрешить загрузку. Если модель отсутствует на устройстве или если доступна более новая версия модели, задача асинхронно загрузит модель из Firebase:

Быстрый

let downloadConditions = ModelDownloadConditions(
  allowsCellularAccess: true,
  allowsBackgroundDownloading: true
)

let downloadProgress = ModelManager.modelManager().download(
  remoteModel,
  conditions: downloadConditions
)

Objective-C

MLKModelDownloadConditions *downloadConditions =
    [[MLKModelDownloadConditions alloc] initWithAllowsCellularAccess:YES
                                         allowsBackgroundDownloading:YES];

NSProgress *downloadProgress =
    [[MLKModelManager modelManager] downloadRemoteModel:remoteModel
                                             conditions:downloadConditions];

Во многих приложениях задача загрузки запускается в коде инициализации, но вы можете сделать это в любой момент до того, как вам понадобится использовать модель.

Создайте средство разметки изображений на основе вашей модели.

После настройки источников модели создайте объект ImageLabeler на основе одного из них.

Если у вас есть только локально упакованная модель, просто создайте объект Labeler из объекта LocalModel и настройте требуемый пороговый уровень достоверности (см. раздел «Оценка модели» ):

Быстрый

let options = CustomImageLabelerOptions(localModel: localModel)
options.confidenceThreshold = NSNumber(value: 0.0)  // Evaluate your model in the Cloud console
                                                    // to determine an appropriate value.
let imageLabeler = ImageLabeler.imageLabeler(options)

Objective-C

CustomImageLabelerOptions *options =
    [[CustomImageLabelerOptions alloc] initWithLocalModel:localModel];
options.confidenceThreshold = @(0.0f);  // Evaluate your model in the Cloud console
                                        // to determine an appropriate value.
MLKImageLabeler *imageLabeler =
    [MLKImageLabeler imageLabelerWithOptions:options];

Если у вас есть удаленно размещенная модель, вам необходимо убедиться, что она загружена, прежде чем запускать ее. Вы можете проверить статус задачи загрузки модели, используя метод isModelDownloaded(remoteModel:) менеджера моделей.

Хотя подтверждение этого требуется только перед запуском разметчика, если у вас есть как удаленно размещенная модель, так и локально упакованная модель, имеет смысл выполнить эту проверку при создании экземпляра ImageLabeler : создать разметчик из удаленной модели, если она была загружена, и из локальной модели в противном случае.

Быстрый

var options: CustomImageLabelerOptions
if (ModelManager.modelManager().isModelDownloaded(remoteModel)) {
  options = CustomImageLabelerOptions(remoteModel: remoteModel)
} else {
  options = CustomImageLabelerOptions(localModel: localModel)
}
options.confidenceThreshold = NSNumber(value: 0.0)  // Evaluate your model in the Firebase console
                                                    // to determine an appropriate value.
let imageLabeler = ImageLabeler.imageLabeler(options: options)

Objective-C

MLKCustomImageLabelerOptions *options;
if ([[MLKModelManager modelManager] isModelDownloaded:remoteModel]) {
  options = [[MLKCustomImageLabelerOptions alloc] initWithRemoteModel:remoteModel];
} else {
  options = [[MLKCustomImageLabelerOptions alloc] initWithLocalModel:localModel];
}
options.confidenceThreshold = @(0.0f);  // Evaluate your model in the Firebase console
                                        // to determine an appropriate value.
MLKImageLabeler *imageLabeler =
    [MLKImageLabeler imageLabelerWithOptions:options];

Если у вас есть только удаленно размещенная модель, следует отключить связанные с ней функции — например, сделать часть пользовательского интерфейса неактивной или скрытой — до тех пор, пока вы не убедитесь, что модель загружена.

Статус загрузки модели можно получить, прикрепив наблюдателей к центру уведомлений по умолчанию. Обязательно используйте слабую ссылку на self в блоке наблюдателя, поскольку загрузка может занять некоторое время, и исходный объект может быть освобожден к моменту завершения загрузки. Например:

Быстрый

NotificationCenter.default.addObserver(
    forName: .mlkitMLModelDownloadDidSucceed,
    object: nil,
    queue: nil
) { [weak self] notification in
    guard let strongSelf = self,
        let userInfo = notification.userInfo,
        let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue]
            as? RemoteModel,
        model.name == "your_remote_model"
        else { return }
    // The model was downloaded and is available on the device
}

NotificationCenter.default.addObserver(
    forName: .mlkitMLModelDownloadDidFail,
    object: nil,
    queue: nil
) { [weak self] notification in
    guard let strongSelf = self,
        let userInfo = notification.userInfo,
        let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue]
            as? RemoteModel
        else { return }
    let error = userInfo[ModelDownloadUserInfoKey.error.rawValue]
    // ...
}

Objective-C

__weak typeof(self) weakSelf = self;

[NSNotificationCenter.defaultCenter
    addObserverForName:MLKModelDownloadDidSucceedNotification
                object:nil
                 queue:nil
            usingBlock:^(NSNotification *_Nonnull note) {
              if (weakSelf == nil | note.userInfo == nil) {
                return;
              }
              __strong typeof(self) strongSelf = weakSelf;

              MLKRemoteModel *model = note.userInfo[MLKModelDownloadUserInfoKeyRemoteModel];
              if ([model.name isEqualToString:@"your_remote_model"]) {
                // The model was downloaded and is available on the device
              }
            }];

[NSNotificationCenter.defaultCenter
    addObserverForName:MLKModelDownloadDidFailNotification
                object:nil
                 queue:nil
            usingBlock:^(NSNotification *_Nonnull note) {
              if (weakSelf == nil | note.userInfo == nil) {
                return;
              }
              __strong typeof(self) strongSelf = weakSelf;

              NSError *error = note.userInfo[MLKModelDownloadUserInfoKeyError];
            }];

2. Подготовьте входное изображение.

Создайте объект VisionImage , используя UIImage или CMSampleBufferRef .

Если вы используете UIImage , выполните следующие действия:

  • Создайте объект VisionImage с использованием UIImage . Убедитесь, что указана правильная .orientation ).

    Быстрый

    let image = VisionImage(image: uiImage)
    visionImage.orientation = image.imageOrientation

    Objective-C

    MLKVisionImage *visionImage = [[MLKVisionImage alloc] initWithImage:image];
    visionImage.orientation = image.imageOrientation;

Если вы используете CMSampleBufferRef , выполните следующие действия:

  • Укажите ориентацию данных изображения, содержащихся в буфере CMSampleBufferRef .

    Чтобы определить ориентацию изображения:

    Быстрый

    func imageOrientation(
      deviceOrientation: UIDeviceOrientation,
      cameraPosition: AVCaptureDevice.Position
    ) -> UIImage.Orientation {
      switch deviceOrientation {
      case .portrait:
        return cameraPosition == .front ? .leftMirrored : .right
      case .landscapeLeft:
        return cameraPosition == .front ? .downMirrored : .up
      case .portraitUpsideDown:
        return cameraPosition == .front ? .rightMirrored : .left
      case .landscapeRight:
        return cameraPosition == .front ? .upMirrored : .down
      case .faceDown, .faceUp, .unknown:
        return .up
      }
    }
          

    Objective-C

    - (UIImageOrientation)
      imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation
                             cameraPosition:(AVCaptureDevicePosition)cameraPosition {
      switch (deviceOrientation) {
        case UIDeviceOrientationPortrait:
          return position == AVCaptureDevicePositionFront ? UIImageOrientationLeftMirrored
                                                          : UIImageOrientationRight;
    
        case UIDeviceOrientationLandscapeLeft:
          return position == AVCaptureDevicePositionFront ? UIImageOrientationDownMirrored
                                                          : UIImageOrientationUp;
        case UIDeviceOrientationPortraitUpsideDown:
          return position == AVCaptureDevicePositionFront ? UIImageOrientationRightMirrored
                                                          : UIImageOrientationLeft;
        case UIDeviceOrientationLandscapeRight:
          return position == AVCaptureDevicePositionFront ? UIImageOrientationUpMirrored
                                                          : UIImageOrientationDown;
        case UIDeviceOrientationUnknown:
        case UIDeviceOrientationFaceUp:
        case UIDeviceOrientationFaceDown:
          return UIImageOrientationUp;
      }
    }
          
  • Создайте объект VisionImage , используя объект CMSampleBufferRef и ориентацию:

    Быстрый

    let image = VisionImage(buffer: sampleBuffer)
    image.orientation = imageOrientation(
      deviceOrientation: UIDevice.current.orientation,
      cameraPosition: cameraPosition)

    Objective-C

     MLKVisionImage *image = [[MLKVisionImage alloc] initWithBuffer:sampleBuffer];
     image.orientation =
       [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation
                                    cameraPosition:cameraPosition];

3. Запустите программу для разметки изображений.

Асинхронно:

Быстрый

imageLabeler.process(image) { labels, error in
    guard error == nil, let labels = labels, !labels.isEmpty else {
        // Handle the error.
        return
    }
    // Show results.
}

Objective-C

[imageLabeler
    processImage:image
      completion:^(NSArray<MLKImageLabel *> *_Nullable labels,
                   NSError *_Nullable error) {
        if (label.count == 0) {
            // Handle the error.
            return;
        }
        // Show results.
     }];

Синхронно:

Быстрый

var labels: [ImageLabel]
do {
    labels = try imageLabeler.results(in: image)
} catch let error {
    // Handle the error.
    return
}
// Show results.

Objective-C

NSError *error;
NSArray<MLKImageLabel *> *labels =
    [imageLabeler resultsInImage:image error:&error];
// Show results or handle the error.

4. Получите информацию об объектах с соответствующими обозначениями.

Если операция разметки изображения прошла успешно, она возвращает массив объектов ImageLabel . Каждый ImageLabel представляет собой то, что было помечено на изображении. Вы можете получить текстовое описание каждой метки (если оно доступно в метаданных файла модели TensorFlow Lite), оценку достоверности и индекс. Например:

Быстрый

for label in labels {
  let labelText = label.text
  let confidence = label.confidence
  let index = label.index
}

Objective-C

for (MLKImageLabel *label in labels) {
  NSString *labelText = label.text;
  float confidence = label.confidence;
  NSInteger index = label.index;
}

Советы по повышению производительности в режиме реального времени

Если вы хотите маркировать изображения в приложении реального времени, следуйте этим рекомендациям, чтобы добиться наилучшей частоты кадров:

  • Вызовы управления детектором. Если во время работы детектора появляется новый видеокадр, кадр отбрасывается.
  • Если вы используете выходные данные детектора для наложения графики на входное изображение, сначала получите результат, а затем отрендерите изображение и наложение за один шаг. Таким образом, вы будете отрендеривать изображение на поверхности дисплея только один раз для каждого входного кадра. Пример можно увидеть в классах previewOverlayView и FIRDetectionOverlayView в демонстрационном примере приложения.