คุณใช้ ML Kit เพื่อตรวจหาใบหน้าในรูปภาพและวิดีโอได้
ก่อนเริ่มต้น
- หากคุณยังไม่ได้ดำเนินการ เพิ่ม Firebase ลงในโปรเจ็กต์ Android
- เพิ่มทรัพยากร Dependency สำหรับไลบรารี ML Kit Android ลงในโมดูล
ไฟล์ Gradle (ระดับแอป) (ปกติราคา
app/build.gradle
):apply plugin: 'com.android.application' apply plugin: 'com.google.gms.google-services' dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:24.0.3' // If you want to detect face contours (landmark detection and classification // don't require this additional model): implementation 'com.google.firebase:firebase-ml-vision-face-model:20.0.1' }
-
ไม่บังคับแต่แนะนำ: กำหนดค่าแอปให้ดาวน์โหลดโดยอัตโนมัติ
โมเดล ML ไปยังอุปกรณ์หลังจากที่ติดตั้งแอปจาก Play Store แล้ว
ในการดำเนินการดังกล่าว ให้เพิ่มการประกาศต่อไปนี้ลงใน
AndroidManifest.xml
ไฟล์: หากคุณไม่เปิดใช้การดาวน์โหลดโมเดลเวลาติดตั้ง โมเดลจะ ดาวน์โหลดมาในครั้งแรกที่เรียกใช้ตัวตรวจจับ คำขอที่คุณสร้างขึ้นก่อน การดาวน์โหลดเสร็จสิ้นจะไม่สร้างผลลัพธ์ใดๆ<application ...> ... <meta-data android:name="com.google.firebase.ml.vision.DEPENDENCIES" android:value="face" /> <!-- To use multiple models: android:value="face,model2,model3" --> </application>
หลักเกณฑ์เกี่ยวกับรูปภาพที่ป้อน
เพื่อให้ ML Kit ตรวจจับใบหน้าได้อย่างแม่นยำ รูปภาพที่ป้อนต้องมีใบหน้า ที่แสดงด้วยข้อมูลพิกเซลที่เพียงพอ โดยทั่วไป แต่ละใบหน้าที่คุณต้องการ รูปภาพควรมีความละเอียดอย่างน้อย 100x100 พิกเซล หากคุณต้องการตรวจจับ รูปทรงของด้าน ML Kit ต้องการอินพุตที่มีความละเอียดสูงขึ้น โดยแต่ละใบหน้า ควรมีขนาดอย่างน้อย 200x200 พิกเซล
ถ้ากำลังตรวจจับใบหน้าในแอปพลิเคชัน แบบเรียลไทม์ คุณอาจต้องการ เพื่อพิจารณาขนาดโดยรวมของรูปภาพที่ป้อน รูปภาพขนาดเล็กกว่าได้ ประมวลผลเร็วขึ้น ดังนั้นหากต้องการลดเวลาในการตอบสนอง ให้จับภาพด้วยความละเอียดที่ต่ำลง (คำนึงถึงข้อกำหนดเกี่ยวกับความถูกต้องข้างต้น) และตรวจสอบให้แน่ใจว่า ใบหน้าของวัตถุใช้พื้นที่ในรูปภาพมากที่สุด ดูนี่ด้วย เคล็ดลับในการปรับปรุงประสิทธิภาพแบบเรียลไทม์
การโฟกัสของรูปภาพไม่ดีอาจทำให้ความแม่นยำลดลง หากคุณไม่ได้รับผลลัพธ์ที่ยอมรับได้ ลองขอให้ผู้ใช้จับภาพอีกครั้ง
การวางแนวของใบหน้าที่สัมพันธ์กับกล้องอาจส่งผลต่อลักษณะของใบหน้าด้วย มีฟีเจอร์ที่ ML Kit ตรวจพบ โปรดดู การตรวจจับใบหน้า แนวคิด
1. กำหนดค่าตัวตรวจจับใบหน้า
ก่อนที่จะใช้การตรวจจับใบหน้ากับรูปภาพ ถ้าต้องการเปลี่ยน การตั้งค่าเริ่มต้นของเครื่องตรวจจับใบหน้า ให้ระบุการตั้งค่าเหล่านั้นด้วยFirebaseVisionFaceDetectorOptions
คุณสามารถเปลี่ยนการตั้งค่าต่อไปนี้ได้
การตั้งค่า | |
---|---|
โหมดประสิทธิภาพ |
FAST (ค่าเริ่มต้น)
| วันที่ ACCURATE
เลือกความเร็วหรือความแม่นยำในการตรวจจับใบหน้า |
ตรวจหาจุดสังเกต |
NO_LANDMARKS (ค่าเริ่มต้น)
| วันที่ ALL_LANDMARKS
ระบุว่าจะพยายามระบุ "จุดสังเกต" บนใบหน้าหรือไม่ ซึ่งได้แก่ ตา หู จมูก แก้ม ปาก และอื่นๆ |
ตรวจหาเส้นโค้ง |
NO_CONTOURS (ค่าเริ่มต้น)
| วันที่ ALL_CONTOURS
เลือกว่าจะตรวจหารูปร่างของใบหน้าหรือไม่ เส้นโครงร่าง ตรวจพบเฉพาะใบหน้าที่โดดเด่นที่สุดในรูปภาพ |
จำแนกใบหน้า |
NO_CLASSIFICATIONS (ค่าเริ่มต้น)
| วันที่ ALL_CLASSIFICATIONS
ไม่ว่าจะจำแนกใบหน้าออกเป็นหมวดหมู่ต่างๆ เช่น "การยิ้ม" หรือไม่ และ "ลืมตา" |
ขนาดใบหน้าขั้นต่ำ |
float (ค่าเริ่มต้น: 0.1f )
ขนาดต่ำสุดซึ่งสัมพันธ์กับภาพของใบหน้าที่จะตรวจจับ |
เปิดใช้การติดตามใบหน้า |
false (ค่าเริ่มต้น) | วันที่ true
กำหนดรหัสใบหน้าหรือไม่ ซึ่งสามารถใช้เพื่อติดตาม ผ่านรูปภาพต่างๆ โปรดทราบว่าเมื่อเปิดใช้การตรวจจับเส้นโครงร่าง จะมีเพียงใบหน้าเดียวเท่านั้น ดังนั้นการติดตามใบหน้าจึงไม่ได้ให้ผลลัพธ์ที่เป็นประโยชน์ สำหรับกรณีนี้ และหากต้องการปรับปรุงความเร็วในการตรวจจับ อย่าเปิดใช้ทั้งสองแบบ การตรวจจับและการติดตามใบหน้า |
เช่น
Java
// High-accuracy landmark detection and face classification FirebaseVisionFaceDetectorOptions highAccuracyOpts = new FirebaseVisionFaceDetectorOptions.Builder() .setPerformanceMode(FirebaseVisionFaceDetectorOptions.ACCURATE) .setLandmarkMode(FirebaseVisionFaceDetectorOptions.ALL_LANDMARKS) .setClassificationMode(FirebaseVisionFaceDetectorOptions.ALL_CLASSIFICATIONS) .build(); // Real-time contour detection of multiple faces FirebaseVisionFaceDetectorOptions realTimeOpts = new FirebaseVisionFaceDetectorOptions.Builder() .setContourMode(FirebaseVisionFaceDetectorOptions.ALL_CONTOURS) .build();
Kotlin+KTX
// High-accuracy landmark detection and face classification val highAccuracyOpts = FirebaseVisionFaceDetectorOptions.Builder() .setPerformanceMode(FirebaseVisionFaceDetectorOptions.ACCURATE) .setLandmarkMode(FirebaseVisionFaceDetectorOptions.ALL_LANDMARKS) .setClassificationMode(FirebaseVisionFaceDetectorOptions.ALL_CLASSIFICATIONS) .build() // Real-time contour detection of multiple faces val realTimeOpts = FirebaseVisionFaceDetectorOptions.Builder() .setContourMode(FirebaseVisionFaceDetectorOptions.ALL_CONTOURS) .build()
2. เรียกใช้ตัวตรวจจับใบหน้า
หากต้องการตรวจจับใบหน้าในรูปภาพ ให้สร้างวัตถุFirebaseVisionImage
จากอาร์เรย์ Bitmap
, media.Image
, ByteBuffer
, ไบต์ หรือไฟล์ใน
อุปกรณ์ จากนั้นส่งออบเจ็กต์ FirebaseVisionImage
ไปยัง
เมธอด detectInImage
ของ FirebaseVisionFaceDetector
สำหรับการจดจำใบหน้า คุณควรใช้รูปภาพที่มีขนาดอย่างน้อย 480x360 พิกเซล หากคุณจดจำใบหน้าได้ในแบบเรียลไทม์ การจับภาพเฟรมต่างๆ ความละเอียดขั้นต่ำนี้จะช่วยลดเวลาในการตอบสนองได้
สร้างออบเจ็กต์
FirebaseVisionImage
จาก รูปภาพ-
วิธีสร้างออบเจ็กต์
FirebaseVisionImage
จากmedia.Image
เช่น เมื่อจับภาพจาก กล้องของอุปกรณ์ ส่งวัตถุmedia.Image
และ การหมุนเวียนเป็นFirebaseVisionImage.fromMediaImage()
หากคุณใช้แท็ก ไลบรารี CameraX,
OnImageCapturedListener
และImageAnalysis.Analyzer
คลาสจะคำนวณค่าการหมุนเวียน คุณเพียงแค่ต้องแปลงการหมุนเป็น ML Kit ค่าคงที่ROTATION_
ก่อนโทรFirebaseVisionImage.fromMediaImage()
:Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
หากคุณไม่ได้ใช้ไลบรารีกล้องถ่ายรูปที่ให้การหมุนของภาพ คุณ สามารถคำนวณได้จากการหมุนของอุปกรณ์และการวางแนวของกล้อง เซ็นเซอร์ในอุปกรณ์:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
จากนั้นส่งออบเจ็กต์
media.Image
และ ค่าการหมุนเวียนเป็นFirebaseVisionImage.fromMediaImage()
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- หากต้องการสร้างออบเจ็กต์
FirebaseVisionImage
จาก URI ของไฟล์ ให้ส่ง บริบทของแอปและ URI ของไฟล์เพื่อFirebaseVisionImage.fromFilePath()
วิธีนี้มีประโยชน์เมื่อคุณ ใช้ IntentACTION_GET_CONTENT
เพื่อแจ้งให้ผู้ใช้เลือก รูปภาพจากแอปแกลเลอรีJava
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- วิธีสร้างออบเจ็กต์
FirebaseVisionImage
จากByteBuffer
หรืออาร์เรย์ไบต์ ให้คำนวณรูปภาพก่อน การหมุนตามที่อธิบายไว้ข้างต้นสำหรับอินพุตmedia.Image
จากนั้นสร้างออบเจ็กต์
FirebaseVisionImageMetadata
ที่มีความสูง ความกว้าง รูปแบบการเข้ารหัสสีของรูปภาพ และการหมุน:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
ใช้บัฟเฟอร์หรืออาร์เรย์ และออบเจ็กต์ข้อมูลเมตาเพื่อสร้าง ออบเจ็กต์
FirebaseVisionImage
รายการ:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
- วิธีสร้างออบเจ็กต์
FirebaseVisionImage
จาก ออบเจ็กต์Bitmap
รายการ:Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
ต้อง ให้ตั้งตรงโดยไม่ต้องมีการหมุนเพิ่มเติม
-
รับอินสแตนซ์ของ
FirebaseVisionFaceDetector
:Java
FirebaseVisionFaceDetector detector = FirebaseVision.getInstance() .getVisionFaceDetector(options);
Kotlin+KTX
val detector = FirebaseVision.getInstance() .getVisionFaceDetector(options)
สุดท้าย ส่งรูปภาพไปยังเมธอด
detectInImage
ดังนี้Java
Task<List<FirebaseVisionFace>> result = detector.detectInImage(image) .addOnSuccessListener( new OnSuccessListener<List<FirebaseVisionFace>>() { @Override public void onSuccess(List<FirebaseVisionFace> faces) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Kotlin+KTX
val result = detector.detectInImage(image) .addOnSuccessListener { faces -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
3. รับข้อมูลเกี่ยวกับใบหน้าที่ตรวจพบ
หากการดำเนินการจดจำใบหน้าสำเร็จ รายการ ระบบจะส่งต่อออบเจ็กต์FirebaseVisionFace
รายการไปสู่ความสำเร็จ
Listener วัตถุ FirebaseVisionFace
แต่ละรายการแสดงใบหน้าที่ตรวจพบ
ในรูปภาพ คุณสามารถดูพิกัดขอบเขตของใบหน้าแต่ละด้านได้ในอินพุต
รวมทั้งข้อมูลอื่นๆ ที่คุณกำหนดค่าอุปกรณ์ตรวจจับใบหน้าไว้
ค้นหา เช่น
Java
for (FirebaseVisionFace face : faces) { Rect bounds = face.getBoundingBox(); float rotY = face.getHeadEulerAngleY(); // Head is rotated to the right rotY degrees float rotZ = face.getHeadEulerAngleZ(); // Head is tilted sideways rotZ degrees // If landmark detection was enabled (mouth, ears, eyes, cheeks, and // nose available): FirebaseVisionFaceLandmark leftEar = face.getLandmark(FirebaseVisionFaceLandmark.LEFT_EAR); if (leftEar != null) { FirebaseVisionPoint leftEarPos = leftEar.getPosition(); } // If contour detection was enabled: List<FirebaseVisionPoint> leftEyeContour = face.getContour(FirebaseVisionFaceContour.LEFT_EYE).getPoints(); List<FirebaseVisionPoint> upperLipBottomContour = face.getContour(FirebaseVisionFaceContour.UPPER_LIP_BOTTOM).getPoints(); // If classification was enabled: if (face.getSmilingProbability() != FirebaseVisionFace.UNCOMPUTED_PROBABILITY) { float smileProb = face.getSmilingProbability(); } if (face.getRightEyeOpenProbability() != FirebaseVisionFace.UNCOMPUTED_PROBABILITY) { float rightEyeOpenProb = face.getRightEyeOpenProbability(); } // If face tracking was enabled: if (face.getTrackingId() != FirebaseVisionFace.INVALID_ID) { int id = face.getTrackingId(); } }
Kotlin+KTX
for (face in faces) { val bounds = face.boundingBox val rotY = face.headEulerAngleY // Head is rotated to the right rotY degrees val rotZ = face.headEulerAngleZ // Head is tilted sideways rotZ degrees // If landmark detection was enabled (mouth, ears, eyes, cheeks, and // nose available): val leftEar = face.getLandmark(FirebaseVisionFaceLandmark.LEFT_EAR) leftEar?.let { val leftEarPos = leftEar.position } // If contour detection was enabled: val leftEyeContour = face.getContour(FirebaseVisionFaceContour.LEFT_EYE).points val upperLipBottomContour = face.getContour(FirebaseVisionFaceContour.UPPER_LIP_BOTTOM).points // If classification was enabled: if (face.smilingProbability != FirebaseVisionFace.UNCOMPUTED_PROBABILITY) { val smileProb = face.smilingProbability } if (face.rightEyeOpenProbability != FirebaseVisionFace.UNCOMPUTED_PROBABILITY) { val rightEyeOpenProb = face.rightEyeOpenProbability } // If face tracking was enabled: if (face.trackingId != FirebaseVisionFace.INVALID_ID) { val id = face.trackingId } }
ตัวอย่างคอนทัวร์ของใบหน้า
เมื่อเปิดใช้การตรวจจับเส้นโครงร่างใบหน้า คุณจะได้รับรายการจุดสำหรับ ลักษณะใบหน้าแต่ละรายการที่ตรวจพบ จุดเหล่านี้แสดงรูปร่างของ ดู Face ภาพรวมแนวคิดการตรวจจับสำหรับรายละเอียดเกี่ยวกับรูปร่าง ที่มีตัวแทน
ภาพต่อไปนี้แสดงให้เห็นว่าจุดเหล่านี้แมปกับด้านอย่างไร (คลิก ภาพเพื่อขยาย):
การตรวจจับใบหน้าแบบเรียลไทม์
หากคุณต้องการใช้การตรวจจับใบหน้าในแอปพลิเคชันแบบเรียลไทม์ ให้ทำตามดังนี้ เพื่อให้ได้อัตราเฟรมที่ดีที่สุด
กำหนดค่าตัวตรวจจับใบหน้าเพื่อใช้ การตรวจจับเส้นโครงร่างใบหน้าหรือการแยกประเภทและการตรวจจับจุดสังเกต แต่ไม่ใช่ทั้ง 2 อย่าง
การตรวจจับรูปร่าง
การตรวจจับจุดสังเกต
การจัดประเภท
การตรวจหาและการแยกประเภทจุดสังเกต
การตรวจจับเส้นโค้งและการตรวจจับจุดสังเกต
การตรวจหาและการแยกประเภทรูปร่าง
การตรวจจับเส้นโค้ง การตรวจหาจุดสังเกต และการแยกประเภทเปิดใช้โหมด
FAST
(เปิดใช้โดยค่าเริ่มต้น)ลองจับภาพที่ความละเอียดต่ำลง แต่โปรดทราบว่า ข้อกำหนดขนาดรูปภาพของ API นี้
- กดคันเร่งไปยังตัวตรวจจับ หากเฟรมวิดีโอใหม่กลายเป็น วางเฟรมได้ในขณะที่ตัวตรวจจับกำลังทำงานอยู่
- หากคุณกำลังใช้เอาต์พุตของเครื่องมือตรวจสอบเพื่อวางซ้อนกราฟิก รูปภาพอินพุต รับผลลัพธ์จาก ML Kit ก่อน จากนั้นจึงแสดงผลรูปภาพ ซ้อนทับในขั้นตอนเดียว การทำเช่นนี้จะช่วยให้แสดงผลบนพื้นผิวจอแสดงผล เพียงครั้งเดียวสำหรับเฟรมอินพุตแต่ละเฟรม
-
หากคุณใช้ Camera2 API ให้จับภาพใน
ImageFormat.YUV_420_888
หากคุณใช้ Camera API รุ่นเก่า ให้จับภาพใน
ImageFormat.NV21