Bạn có thể dùng Firebase ML để gắn nhãn cho các đối tượng được nhận dạng trong hình ảnh. Xem Overview (Tổng quan) để biết thông tin về API các tính năng AI mới.
Trước khi bắt đầu
- Nếu bạn chưa làm như vậy, thêm Firebase vào dự án Android của bạn.
-
Trong tệp Gradle mô-đun (cấp ứng dụng)
(thường là
<project>/<app-module>/build.gradle.kts
hoặc<project>/<app-module>/build.gradle
), thêm phần phụ thuộc cho thư viện Tầm nhìn Firebase ML dành cho Android. Bạn nên sử dụng Firebase Android BoM để kiểm soát việc tạo phiên bản thư viện.dependencies { // Import the BoM for the Firebase platform implementation(platform("com.google.firebase:firebase-bom:33.3.0")) // Add the dependency for the Firebase ML Vision library // When using the BoM, you don't specify versions in Firebase library dependencies implementation 'com.google.firebase:firebase-ml-vision' }
Khi sử dụng Firebase Android BoM, ứng dụng của bạn sẽ luôn sử dụng các phiên bản tương thích của thư viện Android trên Firebase.
(Phương án thay thế) Thêm các phần phụ thuộc của thư viện Firebase mà không sử dụng BoM
Nếu chọn không sử dụng Firebase BoM, bạn phải chỉ định từng phiên bản thư viện Firebase trong dòng phụ thuộc.
Lưu ý rằng nếu bạn sử dụng nhiều thư viện Firebase trong ứng dụng của mình, bạn nên sử dụng BoM để quản lý các phiên bản thư viện. Việc này đảm bảo rằng tất cả các phiên bản đều tương thích.
dependencies { // Add the dependency for the Firebase ML Vision library // When NOT using the BoM, you must specify versions in Firebase library dependencies implementation 'com.google.firebase:firebase-ml-vision:24.1.0' }
-
Nếu bạn chưa bật API trên đám mây cho dự án của mình, hãy bật bây giờ:
- Mở Firebase ML trang API của bảng điều khiển Firebase.
-
Nếu bạn chưa nâng cấp dự án của mình lên Gói giá linh hoạt, hãy nhấp vào Hãy nâng cấp để làm điều này. (Bạn sẽ chỉ được nhắc nâng cấp nếu không có trong Kế hoạch linh hoạt.)
Chỉ các dự án cấp Blaze mới có thể sử dụng API trên đám mây.
- Nếu bạn chưa bật API trên đám mây, hãy nhấp vào Bật API dựa trên đám mây API.
Bây giờ, bạn đã sẵn sàng để gắn nhãn cho hình ảnh.
1. Chuẩn bị hình ảnh đầu vào
Tạo một đối tượngFirebaseVisionImage
từ hình ảnh của bạn.
Công cụ gắn nhãn hình ảnh chạy nhanh nhất khi bạn sử dụng Bitmap
hoặc nếu bạn sử dụng
camera2 API, một media.Image
có định dạng JPEG, được khuyên dùng khi
nhất có thể.
-
Cách tạo đối tượng
FirebaseVisionImage
qua Đối tượngmedia.Image
, chẳng hạn như khi chụp ảnh từ camera của thiết bị, hãy truyền đối tượngmedia.Image
và xoay thànhFirebaseVisionImage.fromMediaImage()
.Nếu bạn sử dụng Thư viện CameraX,
OnImageCapturedListener
và Các lớpImageAnalysis.Analyzer
tính toán giá trị xoay cho bạn, nên bạn chỉ cần chuyển đổi chế độ xoay thành một trong Firebase ML Hằng sốROTATION_
trước khi gọiFirebaseVisionImage.fromMediaImage()
:Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Vision API // ... } }
Nếu không sử dụng thư viện máy ảnh cho phép bạn xoay hình ảnh, có thể tính toán kích thước này dựa trên hướng xoay của thiết bị và hướng của máy ảnh cảm biến trong thiết bị:
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Sau đó, hãy truyền đối tượng
media.Image
và thànhFirebaseVisionImage.fromMediaImage()
:Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
- Để tạo đối tượng
FirebaseVisionImage
qua URI tệp, hãy truyền ngữ cảnh ứng dụng và URI tệp đểFirebaseVisionImage.fromFilePath()
Điều này rất hữu ích khi bạn sử dụng ý địnhACTION_GET_CONTENT
để nhắc người dùng chọn một bức ảnh trong ứng dụng thư viện của họ.Kotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
- Cách tạo đối tượng
FirebaseVisionImage
quaByteBuffer
hoặc một mảng byte, trước tiên, hãy tính hình ảnh như mô tả ở trên cho đầu vàomedia.Image
.Sau đó, hãy tạo một đối tượng
FirebaseVisionImageMetadata
có chứa chiều cao, chiều rộng, định dạng mã hoá màu của hình ảnh, và xoay:Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Sử dụng vùng đệm hoặc mảng và đối tượng siêu dữ liệu để tạo một Đối tượng
FirebaseVisionImage
:Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
- Cách tạo đối tượng
FirebaseVisionImage
qua Đối tượngBitmap
:Kotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Bitmap
đại diện phải thẳng đứng mà không cần xoay thêm.
2. Định cấu hình và chạy công cụ gắn nhãn hình ảnh
Để gắn nhãn cho các đối tượng trong hình ảnh, hãy truyền đối tượngFirebaseVisionImage
vào phương thức
Phương thức processImage
của FirebaseVisionImageLabeler
.
Trước tiên, hãy lấy một phiên bản của
FirebaseVisionImageLabeler
.Kotlin+KTX
val labeler = FirebaseVision.getInstance().getCloudImageLabeler() // Or, to set the minimum confidence required: // val options = FirebaseVisionCloudImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build() // val labeler = FirebaseVision.getInstance().getCloudImageLabeler(options)
Java
FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() .getCloudImageLabeler(); // Or, to set the minimum confidence required: // FirebaseVisionCloudImageLabelerOptions options = // new FirebaseVisionCloudImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build(); // FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() // .getCloudImageLabeler(options);
Sau đó, hãy truyền hình ảnh đó vào phương thức
processImage()
:Kotlin+KTX
labeler.processImage(image) .addOnSuccessListener { labels -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
labeler.processImage(image) .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionImageLabel>>() { @Override public void onSuccess(List<FirebaseVisionImageLabel> labels) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
3. Nhận thông tin về đối tượng được gắn nhãn
Nếu thao tác gắn nhãn hình ảnh thành công, danh sách Các đối tượngFirebaseVisionImageLabel
sẽ được chuyển đến
trình nghe thành công. Mỗi đối tượng FirebaseVisionImageLabel
đại diện cho một nội dung nào đó
được gắn nhãn trong hình ảnh. Đối với mỗi nhãn, bạn có thể lấy văn bản của nhãn
mô tả, mô tả
Mã nhận dạng thực thể Sơ đồ tri thức
(nếu có) và điểm số tin cậy của kết quả trùng khớp. Ví dụ:
Kotlin+KTX
for (label in labels) {
val text = label.text
val entityId = label.entityId
val confidence = label.confidence
}
Java
for (FirebaseVisionImageLabel label: labels) {
String text = label.getText();
String entityId = label.getEntityId();
float confidence = label.getConfidence();
}
Các bước tiếp theo
- Trước khi triển khai phát hành công khai một ứng dụng sử dụng Cloud API, bạn nên thực hiện một số bước bổ sung nhằm ngăn chặn và giảm thiểu ảnh hưởng của việc truy cập trái phép API.