ML Kit を使用して画像内のテキストを認識する(iOS)

ML Kit を使用すると、画像内のテキストを認識できます。ML Kit には、画像内テキスト(道路標識のテキストなど)の認識に適した汎用 API と、ドキュメント内テキストの認識に最適化された API があります。汎用 API には、デバイスモデルとクラウドベース モデルの 2 つがあります。ドキュメント テキスト認識はクラウドベース モデルでのみ使用できます。クラウドモデルとデバイスモデルの比較については、概要をご覧ください。

始める前に

  1. まだアプリに Firebase を追加していない場合は、スタートガイドの手順に沿って追加してください。
  2. ML Kit ライブラリを Podfile に含めます:
    pod 'Firebase/MLVision', '6.25.0'
    # If using an on-device API:
    pod 'Firebase/MLVisionTextModel', '6.25.0'
    
    プロジェクトの Pod をインストールまたは更新した後に、.xcworkspace を使用して Xcode プロジェクトを開くようにしてください。
  3. アプリに Firebase をインポートします。

    Swift

    import Firebase

    Objective-C

    @import Firebase;
  4. Cloud ベース モデルを使用する場合に、まだプロジェクトで Cloud ベースの API を有効にしていないときは、ここで有効にします。

    1. Firebase コンソールの ML Kit API ページを開きます。
    2. まだプロジェクトを Blaze 料金プランにアップグレードしていない場合は、[アップグレード] をクリックしてアップグレードします(プロジェクトをアップグレードするよう求められるのは、プロジェクトが Blaze プランでない場合のみです)。

      Blaze レベルのプロジェクトだけが Cloud ベースの API を使用できます。

    3. Cloud ベースの API がまだ有効になっていない場合は、[Cloud ベースの API を有効化] をクリックします。

    デバイスモデルのみを使用する場合は、この手順を省略できます。

これで、画像内のテキストを認識する準備ができました。

入力画像に関するガイドライン

  • ML Kit でテキストを正確に認識するためには、入力画像に含まれているテキストが十分なピクセルデータによって表示されている必要があります。ラテン文字のテキストの場合は、各文字が少なくとも 16x16 ピクセルであるのが理想的です。中国語、日本語、韓国語のテキスト(クラウドベース API でのみサポートされています)では、各文字が 24x24 ピクセルであることが望まれます。どの言語においても、一般に、文字を 24x24 ピクセルより大きくしても認識精度は向上しません。

    そのため、たとえば画像の全幅を占める名刺をスキャンする場合は、640x480 の画像が適しています。レターサイズの用紙に印刷された文書をスキャンする場合は、720x1280 ピクセルの画像が必要になることがあります。

  • 画像がぼやけていると、テキスト認識の精度が低下する可能性があります。満足のいく結果が得られない場合は、ユーザーに画像をキャプチャし直すよう求めてください。

  • リアルタイム アプリケーションでテキストを認識する場合は、入力画像の全体サイズも考慮する必要があります。サイズが小さいほど処理は高速になるため、レイテンシを短くするには画像を低い解像度でキャプチャし(上記の精度要件に留意)、テキストが画像のできるだけ多くの部分を占めるようにします。リアルタイムのパフォーマンスを改善するためのヒントもご覧ください。


画像内のテキストを認識する

デバイスモデルまたはクラウドベース モデルを使用して画像内のテキストを認識するには、以下で説明するようにテキスト認識機能を実行します。

1. テキスト認識機能を実行する

画像を `UIImage` または `CMSampleBufferRef` として `VisionTextRecognizer` の `process(_:completion:)` メソッドに渡します。
  1. onDeviceTextRecognizer または cloudTextRecognizer を呼び出し、VisionTextRecognizer のインスタンスを取得します。

    Swift

    デバイスモデルを使用するには:

    let vision = Vision.vision()
    let textRecognizer = vision.onDeviceTextRecognizer()
    

    クラウドモデルを使用するには:

    let vision = Vision.vision()
    let textRecognizer = vision.cloudTextRecognizer()
    
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    let options = VisionCloudTextRecognizerOptions()
    options.languageHints = ["en", "hi"]
    let textRecognizer = vision.cloudTextRecognizer(options: options)
    

    Objective-C

    デバイスモデルを使用するには:

    FIRVision *vision = [FIRVision vision];
    FIRVisionTextRecognizer *textRecognizer = [vision onDeviceTextRecognizer];
    

    クラウドモデルを使用するには:

    FIRVision *vision = [FIRVision vision];
    FIRVisionTextRecognizer *textRecognizer = [vision cloudTextRecognizer];
    
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FIRVisionCloudTextRecognizerOptions *options =
            [[FIRVisionCloudTextRecognizerOptions alloc] init];
    options.languageHints = @[@"en", @"hi"];
    FIRVisionTextRecognizer *textRecognizer = [vision cloudTextRecognizerWithOptions:options];
    
  2. UIImage または CMSampleBufferRef を使用して VisionImage オブジェクトを作成します。

    UIImage を使用するには:

    1. 必要に応じて、imageOrientation プロパティが .up になるように画像を回転させます。
    2. 適切に回転させた UIImage を使用して VisionImage オブジェクトを作成します。回転メタデータにはデフォルト値の .topLeft を使用する必要があるため、値を指定しないでください。

      Swift

      let image = VisionImage(image: uiImage)

      Objective-C

      FIRVisionImage *image = [[FIRVisionImage alloc] initWithImage:uiImage];

    CMSampleBufferRef を使用するには:

    1. VisionImageMetadata オブジェクトを作成し、CMSampleBufferRef バッファに格納されている画像データの向きを指定します。

      画像の向きは次のように取得します。

      Swift

      func imageOrientation(
          deviceOrientation: UIDeviceOrientation,
          cameraPosition: AVCaptureDevice.Position
          ) -> VisionDetectorImageOrientation {
          switch deviceOrientation {
          case .portrait:
              return cameraPosition == .front ? .leftTop : .rightTop
          case .landscapeLeft:
              return cameraPosition == .front ? .bottomLeft : .topLeft
          case .portraitUpsideDown:
              return cameraPosition == .front ? .rightBottom : .leftBottom
          case .landscapeRight:
              return cameraPosition == .front ? .topRight : .bottomRight
          case .faceDown, .faceUp, .unknown:
              return .leftTop
          }
      }

      Objective-C

      - (FIRVisionDetectorImageOrientation)
          imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation
                                 cameraPosition:(AVCaptureDevicePosition)cameraPosition {
        switch (deviceOrientation) {
          case UIDeviceOrientationPortrait:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationLeftTop;
            } else {
              return FIRVisionDetectorImageOrientationRightTop;
            }
          case UIDeviceOrientationLandscapeLeft:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationBottomLeft;
            } else {
              return FIRVisionDetectorImageOrientationTopLeft;
            }
          case UIDeviceOrientationPortraitUpsideDown:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationRightBottom;
            } else {
              return FIRVisionDetectorImageOrientationLeftBottom;
            }
          case UIDeviceOrientationLandscapeRight:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationTopRight;
            } else {
              return FIRVisionDetectorImageOrientationBottomRight;
            }
          default:
            return FIRVisionDetectorImageOrientationTopLeft;
        }
      }

      次に、メタデータ オブジェクトを作成します。

      Swift

      let cameraPosition = AVCaptureDevice.Position.back  // Set to the capture device you used.
      let metadata = VisionImageMetadata()
      metadata.orientation = imageOrientation(
          deviceOrientation: UIDevice.current.orientation,
          cameraPosition: cameraPosition
      )

      Objective-C

      FIRVisionImageMetadata *metadata = [[FIRVisionImageMetadata alloc] init];
      AVCaptureDevicePosition cameraPosition =
          AVCaptureDevicePositionBack;  // Set to the capture device you used.
      metadata.orientation =
          [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation
                                       cameraPosition:cameraPosition];
    2. VisionImage オブジェクトと回転メタデータを使用して CMSampleBufferRef オブジェクトを作成します。

      Swift

      let image = VisionImage(buffer: sampleBuffer)
      image.metadata = metadata

      Objective-C

      FIRVisionImage *image = [[FIRVisionImage alloc] initWithBuffer:sampleBuffer];
      image.metadata = metadata;
  3. 次に、画像を process(_:completion:) メソッドに渡します。

    Swift

    textRecognizer.process(visionImage) { result, error in
      guard error == nil, let result = result else {
        // ...
        return
      }
    
      // Recognized text
    }
    

    Objective-C

    [textRecognizer processImage:image
                      completion:^(FIRVisionText *_Nullable result,
                                   NSError *_Nullable error) {
      if (error != nil || result == nil) {
        // ...
        return;
      }
    
      // Recognized text
    }];
    

2. 認識したテキストのブロックからテキストを抽出する

テキスト認識オペレーションが成功すると、[`VisionText`][VisionText] オブジェクトが返されます。`VisionText` オブジェクトには、画像で認識された全テキストと、0 個以上の [`VisionTextBlock`][VisionTextBlock] オブジェクトが含まれています。各 `VisionTextBlock` は四角形のテキスト ブロックを表し、それぞれのブロックに 0 個以上の [`VisionTextLine`][VisionTextLine] オブジェクトが含まれます。各 `VisionTextLine` オブジェクトには 0 個以上の [`VisionTextElement`][VisionTextElement] オブジェクトが含まれ、これは単語や単語に似たエンティティ(日付や数字など)を表します。`VisionTextBlock`、`VisionTextLine`、`VisionTextElement` のそれぞれのオブジェクトについて、領域内で認識されたテキストと、領域の境界座標を取得できます。次に例を示します。

Swift

let resultText = result.text
for block in result.blocks {
    let blockText = block.text
    let blockConfidence = block.confidence
    let blockLanguages = block.recognizedLanguages
    let blockCornerPoints = block.cornerPoints
    let blockFrame = block.frame
    for line in block.lines {
        let lineText = line.text
        let lineConfidence = line.confidence
        let lineLanguages = line.recognizedLanguages
        let lineCornerPoints = line.cornerPoints
        let lineFrame = line.frame
        for element in line.elements {
            let elementText = element.text
            let elementConfidence = element.confidence
            let elementLanguages = element.recognizedLanguages
            let elementCornerPoints = element.cornerPoints
            let elementFrame = element.frame
        }
    }
}

Objective-C

NSString *resultText = result.text;
for (FIRVisionTextBlock *block in result.blocks) {
  NSString *blockText = block.text;
  NSNumber *blockConfidence = block.confidence;
  NSArray<FIRVisionTextRecognizedLanguage *> *blockLanguages = block.recognizedLanguages;
  NSArray<NSValue *> *blockCornerPoints = block.cornerPoints;
  CGRect blockFrame = block.frame;
  for (FIRVisionTextLine *line in block.lines) {
    NSString *lineText = line.text;
    NSNumber *lineConfidence = line.confidence;
    NSArray<FIRVisionTextRecognizedLanguage *> *lineLanguages = line.recognizedLanguages;
    NSArray<NSValue *> *lineCornerPoints = line.cornerPoints;
    CGRect lineFrame = line.frame;
    for (FIRVisionTextElement *element in line.elements) {
      NSString *elementText = element.text;
      NSNumber *elementConfidence = element.confidence;
      NSArray<FIRVisionTextRecognizedLanguage *> *elementLanguages = element.recognizedLanguages;
      NSArray<NSValue *> *elementCornerPoints = element.cornerPoints;
      CGRect elementFrame = element.frame;
    }
  }
}

リアルタイムのパフォーマンスを改善するためのヒント

デバイスモデルを使用して、リアルタイムのアプリケーションでテキストを認識する場合は、最適なフレームレートを得るために次のガイドラインに従ってください。

  • テキスト認識機能の呼び出しのスロットル調整を行います。テキスト認識機能の実行中に新しい動画フレームが使用可能になった場合は、そのフレームをドロップします。
  • テキスト認識機能の出力を使用して入力画像の上にグラフィックスをオーバーレイする場合は、まず ML Kit からテキスト認識の結果を取得し、次に画像とオーバーレイを 1 つのステップでレンダリングします。これにより、ディスプレイ サーフェスへのレンダリングは入力フレームごとに 1 回で済みます。例については、ショーケース サンプルアプリの previewOverlayView クラスと FIRDetectionOverlayView クラスをご覧ください。
  • より低い解像度で画像をキャプチャすることを検討してください。ただし、この API の画像サイズに関する要件にも留意してください。

次のステップ


ドキュメントの画像でテキストを認識する

ドキュメントのテキストを認識するには、以下の説明に従ってクラウドベースのドキュメント テキスト認識機能を構成して実行します。

以下で説明するように、ドキュメント テキスト認識 API ではドキュメントの画像を処理するための便利なインターフェースが提供されます。ただし、まばらなテキスト用の API で提供されるインターフェースを使用したい場合は、それを使用してドキュメントをスキャンすることもできます。これを行うには、高密度テキストモデルを使用するようにクラウド テキスト認識機能を構成します。

ドキュメント テキスト認識 API を使用するには:

1. テキスト認識機能を実行する

画像を UIImage または CMSampleBufferRef として VisionDocumentTextRecognizerprocess(_:completion:) メソッドに渡します。

  1. cloudDocumentTextRecognizer を呼び出して VisionDocumentTextRecognizer のインスタンスを取得します。

    Swift

    let vision = Vision.vision()
    let textRecognizer = vision.cloudDocumentTextRecognizer()
    
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    let options = VisionCloudDocumentTextRecognizerOptions()
    options.languageHints = ["en", "hi"]
    let textRecognizer = vision.cloudDocumentTextRecognizer(options: options)
    

    Objective-C

    FIRVision *vision = [FIRVision vision];
    FIRVisionDocumentTextRecognizer *textRecognizer = [vision cloudDocumentTextRecognizer];
    
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FIRVisionCloudDocumentTextRecognizerOptions *options =
            [[FIRVisionCloudDocumentTextRecognizerOptions alloc] init];
    options.languageHints = @[@"en", @"hi"];
    FIRVisionDocumentTextRecognizer *textRecognizer = [vision cloudDocumentTextRecognizerWithOptions:options];
    
  2. UIImage または CMSampleBufferRef を使用して VisionImage オブジェクトを作成します。

    UIImage を使用するには:

    1. 必要に応じて、imageOrientation プロパティが .up になるように画像を回転させます。
    2. 適切に回転させた UIImage を使用して VisionImage オブジェクトを作成します。回転メタデータにはデフォルト値の .topLeft を使用する必要があるため、値を指定しないでください。

      Swift

      let image = VisionImage(image: uiImage)

      Objective-C

      FIRVisionImage *image = [[FIRVisionImage alloc] initWithImage:uiImage];

    CMSampleBufferRef を使用するには:

    1. VisionImageMetadata オブジェクトを作成し、CMSampleBufferRef バッファに格納されている画像データの向きを指定します。

      画像の向きは次のように取得します。

      Swift

      func imageOrientation(
          deviceOrientation: UIDeviceOrientation,
          cameraPosition: AVCaptureDevice.Position
          ) -> VisionDetectorImageOrientation {
          switch deviceOrientation {
          case .portrait:
              return cameraPosition == .front ? .leftTop : .rightTop
          case .landscapeLeft:
              return cameraPosition == .front ? .bottomLeft : .topLeft
          case .portraitUpsideDown:
              return cameraPosition == .front ? .rightBottom : .leftBottom
          case .landscapeRight:
              return cameraPosition == .front ? .topRight : .bottomRight
          case .faceDown, .faceUp, .unknown:
              return .leftTop
          }
      }

      Objective-C

      - (FIRVisionDetectorImageOrientation)
          imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation
                                 cameraPosition:(AVCaptureDevicePosition)cameraPosition {
        switch (deviceOrientation) {
          case UIDeviceOrientationPortrait:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationLeftTop;
            } else {
              return FIRVisionDetectorImageOrientationRightTop;
            }
          case UIDeviceOrientationLandscapeLeft:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationBottomLeft;
            } else {
              return FIRVisionDetectorImageOrientationTopLeft;
            }
          case UIDeviceOrientationPortraitUpsideDown:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationRightBottom;
            } else {
              return FIRVisionDetectorImageOrientationLeftBottom;
            }
          case UIDeviceOrientationLandscapeRight:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationTopRight;
            } else {
              return FIRVisionDetectorImageOrientationBottomRight;
            }
          default:
            return FIRVisionDetectorImageOrientationTopLeft;
        }
      }

      次に、メタデータ オブジェクトを作成します。

      Swift

      let cameraPosition = AVCaptureDevice.Position.back  // Set to the capture device you used.
      let metadata = VisionImageMetadata()
      metadata.orientation = imageOrientation(
          deviceOrientation: UIDevice.current.orientation,
          cameraPosition: cameraPosition
      )

      Objective-C

      FIRVisionImageMetadata *metadata = [[FIRVisionImageMetadata alloc] init];
      AVCaptureDevicePosition cameraPosition =
          AVCaptureDevicePositionBack;  // Set to the capture device you used.
      metadata.orientation =
          [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation
                                       cameraPosition:cameraPosition];
    2. VisionImage オブジェクトと回転メタデータを使用して CMSampleBufferRef オブジェクトを作成します。

      Swift

      let image = VisionImage(buffer: sampleBuffer)
      image.metadata = metadata

      Objective-C

      FIRVisionImage *image = [[FIRVisionImage alloc] initWithBuffer:sampleBuffer];
      image.metadata = metadata;
  3. 次に、画像を process(_:completion:) メソッドに渡します。

    Swift

    textRecognizer.process(visionImage) { result, error in
      guard error == nil, let result = result else {
        // ...
        return
      }
    
      // Recognized text
    }
    

    Objective-C

    [textRecognizer processImage:image
                      completion:^(FIRVisionDocumentText *_Nullable result,
                                   NSError *_Nullable error) {
      if (error != nil || result == nil) {
        // ...
        return;
      }
    
        // Recognized text
    }];
    

2. 認識したテキストのブロックからテキストを抽出する

テキスト認識オペレーションが成功すると、VisionDocumentText オブジェクトが返されます。VisionDocumentText オブジェクトには、画像で認識された全テキストと、認識されたドキュメントの構造が反映されているオブジェクトの階層が含まれます。

VisionDocumentTextBlockVisionDocumentTextParagraphVisionDocumentTextWordVisionDocumentTextSymbol のそれぞれのオブジェクトについて、領域内で認識されたテキストと、領域の境界座標を取得できます。

次に例を示します。

Swift

let resultText = result.text
for block in result.blocks {
    let blockText = block.text
    let blockConfidence = block.confidence
    let blockRecognizedLanguages = block.recognizedLanguages
    let blockBreak = block.recognizedBreak
    let blockCornerPoints = block.cornerPoints
    let blockFrame = block.frame
    for paragraph in block.paragraphs {
        let paragraphText = paragraph.text
        let paragraphConfidence = paragraph.confidence
        let paragraphRecognizedLanguages = paragraph.recognizedLanguages
        let paragraphBreak = paragraph.recognizedBreak
        let paragraphCornerPoints = paragraph.cornerPoints
        let paragraphFrame = paragraph.frame
        for word in paragraph.words {
            let wordText = word.text
            let wordConfidence = word.confidence
            let wordRecognizedLanguages = word.recognizedLanguages
            let wordBreak = word.recognizedBreak
            let wordCornerPoints = word.cornerPoints
            let wordFrame = word.frame
            for symbol in word.symbols {
                let symbolText = symbol.text
                let symbolConfidence = symbol.confidence
                let symbolRecognizedLanguages = symbol.recognizedLanguages
                let symbolBreak = symbol.recognizedBreak
                let symbolCornerPoints = symbol.cornerPoints
                let symbolFrame = symbol.frame
            }
        }
    }
}

Objective-C

NSString *resultText = result.text;
for (FIRVisionDocumentTextBlock *block in result.blocks) {
  NSString *blockText = block.text;
  NSNumber *blockConfidence = block.confidence;
  NSArray<FIRVisionTextRecognizedLanguage *> *blockRecognizedLanguages = block.recognizedLanguages;
  FIRVisionTextRecognizedBreak *blockBreak = block.recognizedBreak;
  CGRect blockFrame = block.frame;
  for (FIRVisionDocumentTextParagraph *paragraph in block.paragraphs) {
    NSString *paragraphText = paragraph.text;
    NSNumber *paragraphConfidence = paragraph.confidence;
    NSArray<FIRVisionTextRecognizedLanguage *> *paragraphRecognizedLanguages = paragraph.recognizedLanguages;
    FIRVisionTextRecognizedBreak *paragraphBreak = paragraph.recognizedBreak;
    CGRect paragraphFrame = paragraph.frame;
    for (FIRVisionDocumentTextWord *word in paragraph.words) {
      NSString *wordText = word.text;
      NSNumber *wordConfidence = word.confidence;
      NSArray<FIRVisionTextRecognizedLanguage *> *wordRecognizedLanguages = word.recognizedLanguages;
      FIRVisionTextRecognizedBreak *wordBreak = word.recognizedBreak;
      CGRect wordFrame = word.frame;
      for (FIRVisionDocumentTextSymbol *symbol in word.symbols) {
        NSString *symbolText = symbol.text;
        NSNumber *symbolConfidence = symbol.confidence;
        NSArray<FIRVisionTextRecognizedLanguage *> *symbolRecognizedLanguages = symbol.recognizedLanguages;
        FIRVisionTextRecognizedBreak *symbolBreak = symbol.recognizedBreak;
        CGRect symbolFrame = symbol.frame;
      }
    }
  }
}

次のステップ