Skanowanie kodów kreskowych za pomocą ML Kit na Androidzie

Do rozpoznawania i dekodowania kodów kreskowych możesz używać pakietu ML Kit.

Zanim zaczniesz

  1. Jeśli jeszcze nie masz tego za sobą, dodaj Firebase do swojego projektu na Androida.
  2. Dodaj do modułu zależności między bibliotekami ML Kit na Androida Plik Gradle (na poziomie aplikacji) (zwykle app/build.gradle):
    apply plugin: 'com.android.application'
    apply plugin: 'com.google.gms.google-services'
    
    dependencies {
      // ...
    
      implementation 'com.google.firebase:firebase-ml-vision:24.0.3'
      implementation 'com.google.firebase:firebase-ml-vision-barcode-model:16.0.1'
    }

Wytyczne dotyczące obrazu wejściowego

  • Aby ML Kit mógł dokładnie odczytywać kody kreskowe, obrazy wejściowe muszą zawierać również kody kreskowe, które są reprezentowane przez wystarczającą ilość danych pikseli.

    Konkretne wymagania dotyczące danych pikseli zależą od typu kodu kreskowego oraz ilości zakodowanych w nim danych (ponieważ większość kodów obsługują ładunek o zmiennej długości). Ogólnie rzecz biorąc, najmniej istotne musi mieć co najmniej 2 piksele szerokości (oraz dwuwymiarowych kodów o wysokości 2 pikseli).

    Na przykład kody kreskowe EAN-13 składają się z kresek i spacji oznaczonych znakiem 1, 2, 3 lub 4 jednostki szerokości, więc na obrazie z kodem kreskowym EAN-13 powinny być słupki i o szerokości co najmniej 2, 4, 6 lub 8 pikseli. Ponieważ kod EAN-13 Kod kreskowy ma łącznie 95 jednostek szerokości, a kod kreskowy powinien mieć co najmniej 190 jednostek. pikseli szerokości ekranu.

    Formaty o większej gęstości, np. PDF417, wymagają większych wymiarów w pikselach ML Kit. Na przykład kod PDF417 może mieć maksymalnie 34 „słowa” o szerokości 17 jednostek w jednym wierszu, czyli przynajmniej 1156 pikseli szerokości.

  • Słaba ostrość obrazu może obniżyć dokładność skanowania. Jeśli nie otrzymujesz akceptowalne wyniki, spróbuj poprosić użytkownika o ponowne przechwycenie obrazu.

  • W typowych zastosowaniach zaleca się podanie wyższego obrazu o rozdzielczości (np. 1280 x 720 lub 1920 x 1080), który tworzy kody kreskowe wykrywalny z większej odległości od kamery.

    Jednak w aplikacjach, w których opóźnienia są kluczowe, można poprawić dzięki możliwości robienia zdjęć w niższej rozdzielczości, ale wymagając kod kreskowy stanowi większość zdjęcia wejściowego. Zobacz też Wskazówki, jak zwiększyć skuteczność w czasie rzeczywistym.

1. Skonfiguruj wykrywacz kodów kreskowych

Wiedząc, jakie formaty kodu kreskowego spodziewasz się odczytać, możesz zwiększyć szybkość detektora kodów kreskowych, konfigurując go tak, aby wykrywał tylko te formaty.

Na przykład, aby wykrywać tylko kody Aztec i kody QR, utwórz FirebaseVisionBarcodeDetectorOptions jak w tym przykładzie:

Java

FirebaseVisionBarcodeDetectorOptions options =
        new FirebaseVisionBarcodeDetectorOptions.Builder()
        .setBarcodeFormats(
                FirebaseVisionBarcode.FORMAT_QR_CODE,
                FirebaseVisionBarcode.FORMAT_AZTEC)
        .build();

Kotlin+KTX

val options = FirebaseVisionBarcodeDetectorOptions.Builder()
        .setBarcodeFormats(
                FirebaseVisionBarcode.FORMAT_QR_CODE,
                FirebaseVisionBarcode.FORMAT_AZTEC)
        .build()

Obsługiwane formaty:

  • Kod 128 (FORMAT_CODE_128)
  • Kod 39 (FORMAT_CODE_39)
  • Kod 93 (FORMAT_CODE_93)
  • Codabar (FORMAT_CODABAR)
  • EAN-13 (FORMAT_EAN_13)
  • EAN-8 (FORMAT_EAN_8)
  • ITF (FORMAT_ITF)
  • UPC-A (FORMAT_UPC_A)
  • UPC-E (FORMAT_UPC_E)
  • Kod QR (FORMAT_QR_CODE)
  • PDF417 (FORMAT_PDF417)
  • aztecki (FORMAT_AZTEC)
  • Macierz danych (FORMAT_DATA_MATRIX)
.

2. Uruchom wykrywacz kodów kreskowych

Aby rozpoznawać kody kreskowe na obrazie, utwórz obiekt FirebaseVisionImage z obiektu Bitmap, media.Image, ByteBuffer, tablicy bajtów lub pliku w urządzenia. Następnie przekaż obiekt FirebaseVisionImage do funkcji Metoda detectInImage użytkownika FirebaseVisionBarcodeDetector.

  1. Utwórz obiekt FirebaseVisionImage na podstawie swojego obrazu.

    • Aby utworzyć obiekt FirebaseVisionImage na podstawie media.Image, np. podczas przechwytywania obrazu z z aparatu urządzenia, przekazać obiekt media.Image oraz w kierunku FirebaseVisionImage.fromMediaImage().

      Jeśli używasz tagu CameraX, OnImageCapturedListener oraz ImageAnalysis.Analyzer klasy obliczają wartość rotacji więc wystarczy zmienić rotację na jeden z zestawów ML Kit Stały ROTATION_ przed nawiązaniem połączenia FirebaseVisionImage.fromMediaImage():

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Kit Vision API
              // ...
          }
      }

      Kotlin+KTX

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Kit Vision API
                  // ...
              }
          }
      }

      Jeśli nie korzystasz z biblioteki aparatu zapewniającej obrót obrazu, może go obliczyć na podstawie obrotu urządzenia i orientacji aparatu czujnik w urządzeniu:

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Kotlin+KTX

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      Następnie przekaż obiekt media.Image oraz wartość rotacji do FirebaseVisionImage.fromMediaImage():

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
    • Aby utworzyć obiekt FirebaseVisionImage na podstawie identyfikatora URI pliku, przekaż kontekst aplikacji i identyfikator URI pliku FirebaseVisionImage.fromFilePath() Jest to przydatne, gdy użyj intencji ACTION_GET_CONTENT, aby zachęcić użytkownika do wyboru obraz z aplikacji Galeria.

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }

      Kotlin+KTX

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }
    • Aby utworzyć obiekt FirebaseVisionImage na podstawie ByteBuffer lub tablicy bajtów, najpierw oblicz wartość obrazu w sposób opisany powyżej dla danych wejściowych media.Image.

      Następnie utwórz obiekt FirebaseVisionImageMetadata określającą wysokość, szerokość i format kodowania kolorów obrazu i rotacja:

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Kotlin+KTX

      val metadata = FirebaseVisionImageMetadata.Builder()
              .setWidth(480) // 480x360 is typically sufficient for
              .setHeight(360) // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build()

      Za pomocą bufora lub tablicy oraz obiektu metadanych utwórz FirebaseVisionImage obiekt:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
    • Aby utworzyć obiekt FirebaseVisionImage na podstawie Obiekt Bitmap:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromBitmap(bitmap)
      Obraz reprezentowany przez obiekt Bitmap musi być pionowo bez konieczności dodatkowego obracania.

  2. Pobierz instancję FirebaseVisionBarcodeDetector:

    Java

    FirebaseVisionBarcodeDetector detector = FirebaseVision.getInstance()
            .getVisionBarcodeDetector();
    // Or, to specify the formats to recognize:
    // FirebaseVisionBarcodeDetector detector = FirebaseVision.getInstance()
    //        .getVisionBarcodeDetector(options);

    Kotlin+KTX

    val detector = FirebaseVision.getInstance()
            .visionBarcodeDetector
    // Or, to specify the formats to recognize:
    // val detector = FirebaseVision.getInstance()
    //        .getVisionBarcodeDetector(options)
  3. Na koniec przekaż obraz do metody detectInImage:

    Java

    Task<List<FirebaseVisionBarcode>> result = detector.detectInImage(image)
            .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionBarcode>>() {
                @Override
                public void onSuccess(List<FirebaseVisionBarcode> barcodes) {
                    // Task completed successfully
                    // ...
                }
            })
            .addOnFailureListener(new OnFailureListener() {
                @Override
                public void onFailure(@NonNull Exception e) {
                    // Task failed with an exception
                    // ...
                }
                    });

    Kotlin+KTX

    val result = detector.detectInImage(image)
            .addOnSuccessListener { barcodes ->
                // Task completed successfully
                // ...
            }
            .addOnFailureListener {
                // Task failed with an exception
                // ...
            }

3. Uzyskiwanie informacji z kodów kreskowych

Jeśli operacja rozpoznawania kodu kreskowego się powiedzie, pojawi się lista Obiekty FirebaseVisionBarcode zostaną przekazane detektorowi sukcesu. Każdy FirebaseVisionBarcode obiekt reprezentuje kod kreskowy wykryty w . Dla każdego kodu kreskowego można uzyskać współrzędne ograniczające dla każdego kodu kreskowego jak i nieprzetworzone dane zakodowane przez kod kreskowy. Jeśli kod kreskowy udało się określić typ danych zakodowanych przez kod kreskowy, można pobierz obiekt zawierający przeanalizowane dane.

Przykład:

Java

for (FirebaseVisionBarcode barcode: barcodes) {
    Rect bounds = barcode.getBoundingBox();
    Point[] corners = barcode.getCornerPoints();

    String rawValue = barcode.getRawValue();

    int valueType = barcode.getValueType();
    // See API reference for complete list of supported types
    switch (valueType) {
        case FirebaseVisionBarcode.TYPE_WIFI:
            String ssid = barcode.getWifi().getSsid();
            String password = barcode.getWifi().getPassword();
            int type = barcode.getWifi().getEncryptionType();
            break;
        case FirebaseVisionBarcode.TYPE_URL:
            String title = barcode.getUrl().getTitle();
            String url = barcode.getUrl().getUrl();
            break;
    }
}

Kotlin+KTX

for (barcode in barcodes) {
    val bounds = barcode.boundingBox
    val corners = barcode.cornerPoints

    val rawValue = barcode.rawValue

    val valueType = barcode.valueType
    // See API reference for complete list of supported types
    when (valueType) {
        FirebaseVisionBarcode.TYPE_WIFI -> {
            val ssid = barcode.wifi!!.ssid
            val password = barcode.wifi!!.password
            val type = barcode.wifi!!.encryptionType
        }
        FirebaseVisionBarcode.TYPE_URL -> {
            val title = barcode.url!!.title
            val url = barcode.url!!.url
        }
    }
}

Wskazówki dotyczące poprawy skuteczności w czasie rzeczywistym

Jeśli chcesz skanować kody kreskowe za pomocą aplikacji działającej w czasie rzeczywistym, postępuj zgodnie z tymi wytycznych dotyczących uzyskiwania najlepszej liczby klatek na sekundę:

  • Nie rejestruj danych wejściowych w rozdzielczości natywnej kamery. Na niektórych urządzeniach przechwytywanie danych wejściowych w rozdzielczości natywnej zapewnia bardzo duże w megapikselach), co skutkuje bardzo małym opóźnieniem bez dokładności. Zamiast tego żądaj od aparatu tylko wymaganego rozmiaru dla wykrywania kodu kreskowego: zwykle nie więcej niż 2 megapiksele.

    Jeśli szybkość skanowania jest ważna, możesz zmniejszyć zakres skanowania i ich rozwiązania. Należy jednak pamiętać o minimalnym rozmiarze kodu kreskowego. opisane powyżej.

  • Ogranicz wywołania do detektora. Jeśli nowa klatka wideo dostępnych, gdy detektor jest uruchomiony, upuść ramkę.
  • Jeśli używasz danych wyjściowych detektora do nakładania grafiki na obrazu wejściowego, najpierw pobierz wynik z ML Kit, a następnie wyrenderuj obraz i nakładanie nakładek w jednym kroku. W ten sposób renderowanie na powierzchni tylko raz na każdą ramkę wejściową.
  • Jeśli korzystasz z interfejsu API Camera2, rób zdjęcia w Format: ImageFormat.YUV_420_888.

    Jeśli używasz starszej wersji interfejsu Camera API, rób zdjęcia w Format: ImageFormat.NV21.