Po wytrenowaniu własnego modelu za pomocą AutoML Vision Edge możesz go używać w aplikacji do wykrywania obiektów na obrazach.
Modele wytrenowane za pomocą AutoML Vision Edge można integrować na 2 sposoby. Możesz zgrupować model, kopiując jego pliki do projektu Xcode, lub pobrać go dynamicznie z Firebase.
Opcje grupowania modeli | |
---|---|
W pakiecie w aplikacji |
|
Hostowany w Firebase |
|
Zanim zaczniesz
Jeśli chcesz pobrać model, dodaj Firebase do projektu w Apple, jeśli nie zostało to jeszcze zrobione. Nie jest to wymagane, gdy model jest w pakiecie.
Uwzględnij biblioteki TensorFlow i Firebase w pliku Podfile:
Aby połączyć model z aplikacją:
Swift
pod 'TensorFlowLiteSwift'
Objective-C
pod 'TensorFlowLiteObjC'
Aby dynamicznie pobierać model z Firebase, dodaj zależność
Firebase/MLModelInterpreter
:Swift
pod 'TensorFlowLiteSwift' pod 'Firebase/MLModelInterpreter'
Objective-C
pod 'TensorFlowLiteObjC' pod 'Firebase/MLModelInterpreter'
Po zainstalowaniu lub zaktualizowaniu pakietów projektu otwórz projekt Xcode za pomocą
.xcworkspace
.
1. Wczytaj model
Konfigurowanie źródła lokalnego modelu
Aby dołączyć model do aplikacji, skopiuj plik modelu i plik etykiet do projektu Xcode, pamiętając o zaznaczeniu opcji Utwórz odwołania do folderów. Plik modelu i etykiety zostaną uwzględnione w pakiecie aplikacji.
Sprawdź też plik tflite_metadata.json
utworzony razem z modelem. Potrzebujesz 2 wartości:
- Wymiary wejściowe modelu. Domyślnie jest to 320 x 320.
- Maksymalna liczba wykryć modelu. Domyślnie wynosi on 40.
Konfigurowanie źródła modelu hostowanego w Firebase
Aby użyć modelu hostowanego zdalnie, utwórz obiekt CustomRemoteModel
, podając nazwę przypisaną do modelu podczas jego publikowania:
Swift
let remoteModel = CustomRemoteModel(
name: "your_remote_model" // The name you assigned in the Google Cloud console.
)
Objective-C
FIRCustomRemoteModel *remoteModel = [[FIRCustomRemoteModel alloc]
initWithName:@"your_remote_model"];
Następnie uruchom zadanie pobierania modelu, określając warunki, na jakich chcesz zezwolić na pobieranie. Jeśli model nie jest dostępny na urządzeniu lub jest dostępna nowsza wersja modelu, zadanie pobiera go asynchronicznie z Firebase:
Swift
let downloadProgress = ModelManager.modelManager().download(
remoteModel,
conditions: ModelDownloadConditions(
allowsCellularAccess: true,
allowsBackgroundDownloading: true
)
)
Objective-C
FIRModelDownloadConditions *conditions =
[[FIRModelDownloadConditions alloc] initWithAllowsCellularAccess:YES
allowsBackgroundDownloading:YES];
NSProgress *progress = [[FIRModelManager modelManager] downloadModel:remoteModel
conditions:conditions];
Wiele aplikacji inicjuje zadanie pobierania w kodzie inicjującym, ale możesz to zrobić w dowolnym momencie, zanim zaczniesz używać modelu.
Tworzenie wykrywacza obiektów na podstawie modelu
Po skonfigurowaniu źródeł modelu utwórz obiekt TensorFlow Lite Interpreter
na podstawie jednego z nich.
Jeśli masz tylko model zapakowany lokalnie, utwórz interpreter na podstawie pliku modelu:
Swift
guard let modelPath = Bundle.main.path(
forResource: "model",
ofType: "tflite"
) else {
print("Failed to load the model file.")
return true
}
let interpreter = try Interpreter(modelPath: modelPath)
try interpreter.allocateTensors()
Objective-C
NSString *modelPath = [[NSBundle mainBundle] pathForResource:@"model"
ofType:@"tflite"];
NSError *error;
TFLInterpreter *interpreter = [[TFLInterpreter alloc] initWithModelPath:modelPath
error:&error];
if (error != NULL) { return; }
[interpreter allocateTensorsWithError:&error];
if (error != NULL) { return; }
Jeśli model jest hostowany zdalnie, przed jego uruchomieniem musisz sprawdzić, czy został pobrany. Stan zadania pobierania modelu możesz sprawdzić, korzystając z metody isModelDownloaded(remoteModel:)
menedżera modeli.
Musisz to potwierdzić tylko przed uruchomieniem interpretera. Jeśli masz model hostowany zdalnie i model wbudowany lokalnie, warto wykonać tę weryfikację podczas tworzenia instancji Interpreter
: utwórz interpreter z modelu zdalnego, jeśli został pobrany, a w przeciwnym razie – z modelu lokalnego.
Swift
var modelPath: String?
if ModelManager.modelManager().isModelDownloaded(remoteModel) {
ModelManager.modelManager().getLatestModelFilePath(remoteModel) { path, error in
guard error == nil else { return }
guard let path = path else { return }
modelPath = path
}
} else {
modelPath = Bundle.main.path(
forResource: "model",
ofType: "tflite"
)
}
guard modelPath != nil else { return }
let interpreter = try Interpreter(modelPath: modelPath)
try interpreter.allocateTensors()
Objective-C
__block NSString *modelPath;
if ([[FIRModelManager modelManager] isModelDownloaded:remoteModel]) {
[[FIRModelManager modelManager] getLatestModelFilePath:remoteModel
completion:^(NSString * _Nullable filePath,
NSError * _Nullable error) {
if (error != NULL) { return; }
if (filePath == NULL) { return; }
modelPath = filePath;
}];
} else {
modelPath = [[NSBundle mainBundle] pathForResource:@"model"
ofType:@"tflite"];
}
NSError *error;
TFLInterpreter *interpreter = [[TFLInterpreter alloc] initWithModelPath:modelPath
error:&error];
if (error != NULL) { return; }
[interpreter allocateTensorsWithError:&error];
if (error != NULL) { return; }
Jeśli masz tylko model hostowany zdalnie, wyłącz funkcje związane z modelem (np. wygaszaj lub ukryj część interfejsu użytkownika), dopóki nie potwierdzisz, że model został pobrany.
Stan pobierania modelu możesz uzyskać, dołączając obserwatorów do domyślnego Centrum powiadomień. W bloku obserwatora używaj słabego odwołania do self
, ponieważ pobieranie może zająć trochę czasu, a obiekt źródłowy może zostać zwolniony przed zakończeniem pobierania. Przykład:
Swift
NotificationCenter.default.addObserver(
forName: .firebaseMLModelDownloadDidSucceed,
object: nil,
queue: nil
) { [weak self] notification in
guard let strongSelf = self,
let userInfo = notification.userInfo,
let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue]
as? RemoteModel,
model.name == "your_remote_model"
else { return }
// The model was downloaded and is available on the device
}
NotificationCenter.default.addObserver(
forName: .firebaseMLModelDownloadDidFail,
object: nil,
queue: nil
) { [weak self] notification in
guard let strongSelf = self,
let userInfo = notification.userInfo,
let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue]
as? RemoteModel
else { return }
let error = userInfo[ModelDownloadUserInfoKey.error.rawValue]
// ...
}
Objective-C
__weak typeof(self) weakSelf = self;
[NSNotificationCenter.defaultCenter
addObserverForName:FIRModelDownloadDidSucceedNotification
object:nil
queue:nil
usingBlock:^(NSNotification *_Nonnull note) {
if (weakSelf == nil | note.userInfo == nil) {
return;
}
__strong typeof(self) strongSelf = weakSelf;
FIRRemoteModel *model = note.userInfo[FIRModelDownloadUserInfoKeyRemoteModel];
if ([model.name isEqualToString:@"your_remote_model"]) {
// The model was downloaded and is available on the device
}
}];
[NSNotificationCenter.defaultCenter
addObserverForName:FIRModelDownloadDidFailNotification
object:nil
queue:nil
usingBlock:^(NSNotification *_Nonnull note) {
if (weakSelf == nil | note.userInfo == nil) {
return;
}
__strong typeof(self) strongSelf = weakSelf;
NSError *error = note.userInfo[FIRModelDownloadUserInfoKeyError];
}];
2. Przygotuj obraz wejściowy
Następnie musisz przygotować obrazy na potrzeby interpretera TensorFlow Lite.
Przytnij i pomnóż obraz do wymiarów wejściowych modelu, zgodnie z danymi w pliku
tflite_metadata.json
(domyślnie 320 x 320 pikseli). Możesz to zrobić za pomocą Core Image lub biblioteki innej firmy.Skopiuj dane obrazu do pliku
Data
(obiektNSData
):Swift
guard let image: CGImage = // Your input image guard let context = CGContext( data: nil, width: image.width, height: image.height, bitsPerComponent: 8, bytesPerRow: image.width * 4, space: CGColorSpaceCreateDeviceRGB(), bitmapInfo: CGImageAlphaInfo.noneSkipFirst.rawValue ) else { return nil } context.draw(image, in: CGRect(x: 0, y: 0, width: image.width, height: image.height)) guard let imageData = context.data else { return nil } var inputData = Data() for row in 0 ..< 320 { // Model takes 320x320 pixel images as input for col in 0 ..< 320 { let offset = 4 * (col * context.width + row) // (Ignore offset 0, the unused alpha channel) var red = imageData.load(fromByteOffset: offset+1, as: UInt8.self) var green = imageData.load(fromByteOffset: offset+2, as: UInt8.self) var blue = imageData.load(fromByteOffset: offset+3, as: UInt8.self) inputData.append(&red, count: 1) inputData.append(&green, count: 1) inputData.append(&blue, count: 1) } }
Objective-C
CGImageRef image = // Your input image long imageWidth = CGImageGetWidth(image); long imageHeight = CGImageGetHeight(image); CGContextRef context = CGBitmapContextCreate(nil, imageWidth, imageHeight, 8, imageWidth * 4, CGColorSpaceCreateDeviceRGB(), kCGImageAlphaNoneSkipFirst); CGContextDrawImage(context, CGRectMake(0, 0, imageWidth, imageHeight), image); UInt8 *imageData = CGBitmapContextGetData(context); NSMutableData *inputData = [[NSMutableData alloc] initWithCapacity:0]; for (int row = 0; row < 300; row++) { for (int col = 0; col < 300; col++) { long offset = 4 * (row * imageWidth + col); // (Ignore offset 0, the unused alpha channel) UInt8 red = imageData[offset+1]; UInt8 green = imageData[offset+2]; UInt8 blue = imageData[offset+3]; [inputData appendBytes:&red length:1]; [inputData appendBytes:&green length:1]; [inputData appendBytes:&blue length:1]; } }
3. Uruchamianie detektora obiektów
Następnie prześlij przygotowane dane do tłumaczacza:
Swift
try interpreter.copy(inputData, toInputAt: 0)
try interpreter.invoke()
Objective-C
TFLTensor *input = [interpreter inputTensorAtIndex:0 error:&error];
if (error != nil) { return; }
[input copyData:inputData error:&error];
if (error != nil) { return; }
[interpreter invokeWithError:&error];
if (error != nil) { return; }
4. Uzyskiwanie informacji o wykrytych obiektach
Jeśli wykrywanie obiektów się powiedzie, model wygeneruje 3 tablice po 40 elementów (lub dowolną liczbę elementów określoną w pliku tflite_metadata.json
).
Każdy element odpowiada jednemu potencjalnemu obiektowi. Pierwsza tablica to tablica ramek ograniczających, druga – etykiet, a trzecia – wartości ufności. Aby uzyskać dane wyjściowe modelu:
Swift
var output = try interpreter.output(at: 0)
let boundingBoxes =
UnsafeMutableBufferPointer<Float32>.allocate(capacity: 4 * 40)
output.data.copyBytes(to: boundingBoxes)
output = try interpreter.output(at: 1)
let labels =
UnsafeMutableBufferPointer<Float32>.allocate(capacity: 40)
output.data.copyBytes(to: labels)
output = try interpreter.output(at: 2)
let probabilities =
UnsafeMutableBufferPointer<Float32>.allocate(capacity: 40)
output.data.copyBytes(to: probabilities)
Objective-C
TFLTensor *output = [interpreter outputTensorAtIndex:0 error:&error];
if (error != nil) { return; }
NSData *boundingBoxes = [output dataWithError:&error];
if (error != nil) { return; }
output = [interpreter outputTensorAtIndex:1 error:&error];
if (error != nil) { return; }
NSData *labels = [output dataWithError:&error];
if (error != nil) { return; }
output = [interpreter outputTensorAtIndex:2 error:&error];
if (error != nil) { return; }
NSData *probabilities = [output dataWithError:&error];
if (error != nil) { return; }
Następnie możesz połączyć dane wyjściowe etykiety z słownikiem etykiet:
Swift
guard let labelPath = Bundle.main.path(
forResource: "dict",
ofType: "txt"
) else { return true }
let fileContents = try? String(contentsOfFile: labelPath)
guard let labelText = fileContents?.components(separatedBy: "\n") else { return true }
for i in 0 ..< 40 {
let top = boundingBoxes[0 * i]
let left = boundingBoxes[1 * i]
let bottom = boundingBoxes[2 * i]
let right = boundingBoxes[3 * i]
let labelIdx = Int(labels[i])
let label = labelText[labelIdx]
let confidence = probabilities[i]
if confidence > 0.66 {
print("Object found: \(label) (confidence: \(confidence))")
print(" Top-left: (\(left),\(top))")
print(" Bottom-right: (\(right),\(bottom))")
}
}
Objective-C
NSString *labelPath = [NSBundle.mainBundle pathForResource:@"dict"
ofType:@"txt"];
NSString *fileContents = [NSString stringWithContentsOfFile:labelPath
encoding:NSUTF8StringEncoding
error:&error];
if (error != nil || fileContents == NULL) { return; }
NSArray<NSString*> *labelText = [fileContents componentsSeparatedByString:@"\n"];
for (int i = 0; i < 40; i++) {
Float32 top, right, bottom, left;
Float32 labelIdx;
Float32 confidence;
[boundingBoxes getBytes:&top range:NSMakeRange(16 * i + 0, 4)];
[boundingBoxes getBytes:&left range:NSMakeRange(16 * i + 4, 4)];
[boundingBoxes getBytes:&bottom range:NSMakeRange(16 * i + 8, 4)];
[boundingBoxes getBytes:&right range:NSMakeRange(16 * i + 12, 4)];
[labels getBytes:&labelIdx range:NSMakeRange(4 * i, 4)];
[probabilities getBytes:&confidence range:NSMakeRange(4 * i, 4)];
if (confidence > 0.5f) {
NSString *label = labelText[(int)labelIdx];
NSLog(@"Object detected: %@", label);
NSLog(@" Confidence: %f", confidence);
NSLog(@" Top-left: (%f,%f)", left, top);
NSLog(@" Bottom-right: (%f,%f)", right, bottom);
}
}
Wskazówki dotyczące zwiększania skuteczności w czasie rzeczywistym
Jeśli chcesz oznaczać obrazy w aplikacji w czasie rzeczywistym, postępuj zgodnie z tymi wskazówkami, aby uzyskać najlepszą liczbę klatek na sekundę:
- ograniczać wywołania do tego detektora. Jeśli podczas działania detektora pojawi się nowa klatka wideo, odrzuć ją.
- Jeśli używasz danych wyjściowych z detektora do nakładania grafiki na obraz wejściowy, najpierw uzyskaj wynik, a potem renderuj obraz i nakładaj w jednym kroku. W ten sposób renderujesz na powierzchni wyświetlacza tylko raz w przypadku każdej ramki wejściowej. Przykładem są klasy previewOverlayView i FIRDetectionOverlayView w przykładowej aplikacji z galerii.