Вы можете использовать Firebase ML для распознавания известных ориентиров на изображении.
Прежде чем начать
- Если вы еще этого не сделали, добавьте Firebase в свой проект Android .
- В файле Gradle вашего модуля (на уровне приложения) (обычно
<project>/<app-module>/build.gradle.kts
или<project>/<app-module>/build.gradle
) добавьте зависимость для Firebase ML Библиотека Vision для Android. Мы рекомендуем использовать Firebase Android BoM для управления версиями библиотеки.dependencies { // Import the BoM for the Firebase platform implementation(platform("com.google.firebase:firebase-bom:33.2.0")) // Add the dependency for the Firebase ML Vision library // When using the BoM, you don't specify versions in Firebase library dependencies implementation 'com.google.firebase:firebase-ml-vision' }
Используя Firebase Android BoM , ваше приложение всегда будет использовать совместимые версии библиотек Firebase Android.
Ищете библиотечный модуль, специфичный для Kotlin? Начиная с октября 2023 года ( Firebase BoM 32.5.0) от основного модуля библиотеки могут зависеть как разработчики Kotlin, так и Java (подробнее см. FAQ по этой инициативе ).(Альтернатива) Добавить зависимости библиотеки Firebase без использования BoM
Если вы решите не использовать Firebase BoM , вы должны указать каждую версию библиотеки Firebase в ее строке зависимости.
Обратите внимание: если вы используете в своем приложении несколько библиотек Firebase, мы настоятельно рекомендуем использовать BoM для управления версиями библиотек, что гарантирует совместимость всех версий.
dependencies { // Add the dependency for the Firebase ML Vision library // When NOT using the BoM, you must specify versions in Firebase library dependencies implementation 'com.google.firebase:firebase-ml-vision:24.1.0' }
Если вы еще не включили облачные API для своего проекта, сделайте это сейчас:
- Откройте страницу API Firebase ML в консоли Firebase .
Если вы еще не обновили свой проект до тарифного плана Blaze, нажмите «Обновить» , чтобы сделать это. (Вам будет предложено выполнить обновление, только если ваш проект не входит в план Blaze.)
Только проекты уровня Blaze могут использовать облачные API.
- Если облачные API еще не включены, нажмите «Включить облачные API» .
Настройка детектора ориентиров
По умолчанию детектор облаков использует STABLE
версию модели и возвращает до 10 результатов. Если вы хотите изменить любой из этих параметров, укажите их с помощью объекта FirebaseVisionCloudDetectorOptions
.
Например, чтобы изменить обе настройки по умолчанию, создайте объект FirebaseVisionCloudDetectorOptions
, как показано в следующем примере:
Kotlin+KTX
val options = FirebaseVisionCloudDetectorOptions.Builder() .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL) .setMaxResults(15) .build()
Java
FirebaseVisionCloudDetectorOptions options = new FirebaseVisionCloudDetectorOptions.Builder() .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL) .setMaxResults(15) .build();
Чтобы использовать настройки по умолчанию, вы можете использовать FirebaseVisionCloudDetectorOptions.DEFAULT
на следующем шаге.
Запустите детектор ориентиров
Чтобы распознавать ориентиры на изображении, создайте объектFirebaseVisionImage
из Bitmap
, media.Image
, ByteBuffer
, массива байтов или файла на устройстве. Затем передайте объект FirebaseVisionImage
методу detectInImage
FirebaseVisionCloudLandmarkDetector
.Создайте объект
FirebaseVisionImage
из вашего изображения.Чтобы создать объект
FirebaseVisionImage
из объектаmedia.Image
, например, при захвате изображения с камеры устройства, передайте объектmedia.Image
и поворот изображения вFirebaseVisionImage.fromMediaImage()
.Если вы используете библиотеку CameraX , классы
OnImageCapturedListener
иImageAnalysis.Analyzer
вычисляют значение поворота за вас, поэтому вам просто нужно преобразовать поворот в одну из константROTATION_
Firebase ML перед вызовомFirebaseVisionImage.fromMediaImage()
:Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Vision API // ... } }
Если вы не используете библиотеку камер, которая дает вам поворот изображения, вы можете рассчитать его на основе поворота устройства и ориентации датчика камеры на устройстве:
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Затем передайте объект
media.Image
и значение поворота вFirebaseVisionImage.fromMediaImage()
:Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
- Чтобы создать объект
FirebaseVisionImage
из URI файла, передайте контекст приложения и URI файла вFirebaseVisionImage.fromFilePath()
. Это полезно, когда вы используете намерениеACTION_GET_CONTENT
, чтобы предложить пользователю выбрать изображение из приложения галереи.Kotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
- Чтобы создать объект
FirebaseVisionImage
изByteBuffer
или массива байтов, сначала рассчитайте поворот изображения, как описано выше для вводаmedia.Image
.Затем создайте объект
FirebaseVisionImageMetadata
, который содержит высоту, ширину изображения, формат цветовой кодировки и поворот:Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Используйте буфер или массив и объект метаданных для создания объекта
FirebaseVisionImage
:Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
- Чтобы создать объект
FirebaseVisionImage
из объектаBitmap
:Изображение, представленное объектомKotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Bitmap
, должно быть вертикальным, без необходимости дополнительного поворота.
Получите экземпляр
FirebaseVisionCloudLandmarkDetector
:Kotlin+KTX
val detector = FirebaseVision.getInstance() .visionCloudLandmarkDetector // Or, to change the default settings: // val detector = FirebaseVision.getInstance() // .getVisionCloudLandmarkDetector(options)
Java
FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance() .getVisionCloudLandmarkDetector(); // Or, to change the default settings: // FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance() // .getVisionCloudLandmarkDetector(options);
Наконец, передайте изображение методу
detectInImage
:Kotlin+KTX
val result = detector.detectInImage(image) .addOnSuccessListener { firebaseVisionCloudLandmarks -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
Task<List<FirebaseVisionCloudLandmark>> result = detector.detectInImage(image) .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionCloudLandmark>>() { @Override public void onSuccess(List<FirebaseVisionCloudLandmark> firebaseVisionCloudLandmarks) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Получите информацию об признанных достопримечательностях
Если операция распознавания ориентира завершится успешно, список объектовFirebaseVisionCloudLandmark
будет передан прослушивателю успеха. Каждый объект FirebaseVisionCloudLandmark
представляет собой ориентир, распознанный на изображении. Для каждого ориентира вы можете получить его ограничивающие координаты во входном изображении, имя ориентира, его широту и долготу, идентификатор объекта в сети знаний (если доступен) и оценку достоверности совпадения. Например: Kotlin+KTX
for (landmark in firebaseVisionCloudLandmarks) { val bounds = landmark.boundingBox val landmarkName = landmark.landmark val entityId = landmark.entityId val confidence = landmark.confidence // Multiple locations are possible, e.g., the location of the depicted // landmark and the location the picture was taken. for (loc in landmark.locations) { val latitude = loc.latitude val longitude = loc.longitude } }
Java
for (FirebaseVisionCloudLandmark landmark: firebaseVisionCloudLandmarks) { Rect bounds = landmark.getBoundingBox(); String landmarkName = landmark.getLandmark(); String entityId = landmark.getEntityId(); float confidence = landmark.getConfidence(); // Multiple locations are possible, e.g., the location of the depicted // landmark and the location the picture was taken. for (FirebaseVisionLatLng loc: landmark.getLocations()) { double latitude = loc.getLatitude(); double longitude = loc.getLongitude(); } }
Следующие шаги
- Прежде чем развернуть в рабочей среде приложение, использующее Cloud API, вам следует предпринять некоторые дополнительные действия, чтобы предотвратить и смягчить последствия несанкционированного доступа к API .