La versión 22.0.2 de la biblioteca de firebase-ml-model-interpreter
incluye un nuevo método getLatestModelFile()
, que obtiene la ubicación de los modelos personalizados en el dispositivo. Puedes usar este método para crear directamente una instancia de un objeto Interpreter
de TensorFlow Lite, que puedes usar en lugar del wrapper FirebaseModelInterpreter
.
En el futuro, este será el enfoque preferido. Debido a que la versión del intérprete de TensorFlow Lite ya no está vinculada a la versión de biblioteca de Firebase, tienes más flexibilidad para actualizar a las nuevas versiones de TensorFlow Lite cuando lo deseas, o usar con facilidad compilaciones personalizadas de TensorFlow Lite.
En esta página, se muestra cómo migrar de usar FirebaseModelInterpreter
a usar el Interpreter
de TensorFlow Lite.
1. Actualiza las dependencias del proyecto
Actualiza las dependencias de tu proyecto para incluir la versión 22.0.2 de la biblioteca firebase-ml-model-interpreter
(o posterior) y la biblioteca de tensorflow-lite
:
Antes
implementation("com.google.firebase:firebase-ml-model-interpreter:22.0.1")
Después
implementation("com.google.firebase:firebase-ml-model-interpreter:22.0.2")
implementation("org.tensorflow:tensorflow-lite:2.0.0")
2. Crea un intérprete de TensorFlow Lite en lugar de un FirebaseModelInterpreter
En lugar de crear un FirebaseModelInterpreter
, obtén la ubicación del modelo en el dispositivo con getLatestModelFile()
y úsalo para crear un Interpreter
de TensorFlow Lite.
Antes
Kotlin+KTX
val remoteModel = FirebaseCustomRemoteModel.Builder("your_model").build()
val options = FirebaseModelInterpreterOptions.Builder(remoteModel).build()
val interpreter = FirebaseModelInterpreter.getInstance(options)
Java
FirebaseCustomRemoteModel remoteModel =
new FirebaseCustomRemoteModel.Builder("your_model").build();
FirebaseModelInterpreterOptions options =
new FirebaseModelInterpreterOptions.Builder(remoteModel).build();
FirebaseModelInterpreter interpreter = FirebaseModelInterpreter.getInstance(options);
Después
Kotlin+KTX
val remoteModel = FirebaseCustomRemoteModel.Builder("your_model").build()
FirebaseModelManager.getInstance().getLatestModelFile(remoteModel)
.addOnCompleteListener { task ->
val modelFile = task.getResult()
if (modelFile != null) {
// Instantiate an org.tensorflow.lite.Interpreter object.
interpreter = Interpreter(modelFile)
}
}
Java
FirebaseCustomRemoteModel remoteModel =
new FirebaseCustomRemoteModel.Builder("your_model").build();
FirebaseModelManager.getInstance().getLatestModelFile(remoteModel)
.addOnCompleteListener(new OnCompleteListener<File>() {
@Override
public void onComplete(@NonNull Task<File> task) {
File modelFile = task.getResult();
if (modelFile != null) {
// Instantiate an org.tensorflow.lite.Interpreter object.
Interpreter interpreter = new Interpreter(modelFile);
}
}
});
3. Actualiza el código de preparación de entrada y salida
Con FirebaseModelInterpreter
, especificas las formas de entrada y salida del modelo si pasas un objeto FirebaseModelInputOutputOptions
al intérprete cuando lo ejecutas.
En el caso del intérprete de TensorFlow Lite, debes asignar objetos ByteBuffer
con el tamaño correcto para la entrada y salida de tu modelo.
Por ejemplo, si tu modelo tiene una forma de entrada de valores de float
[1 224 224 3] y una forma de salida de valores de float
[1 1,000], realiza estos cambios:
Antes
Kotlin+KTX
val inputOutputOptions = FirebaseModelInputOutputOptions.Builder()
.setInputFormat(0, FirebaseModelDataType.FLOAT32, intArrayOf(1, 224, 224, 3))
.setOutputFormat(0, FirebaseModelDataType.FLOAT32, intArrayOf(1, 1000))
.build()
val input = ByteBuffer.allocateDirect(224*224*3*4).order(ByteOrder.nativeOrder())
// Then populate with input data.
val inputs = FirebaseModelInputs.Builder()
.add(input)
.build()
interpreter.run(inputs, inputOutputOptions)
.addOnSuccessListener { outputs ->
// ...
}
.addOnFailureListener {
// Task failed with an exception.
// ...
}
Java
FirebaseModelInputOutputOptions inputOutputOptions =
new FirebaseModelInputOutputOptions.Builder()
.setInputFormat(0, FirebaseModelDataType.FLOAT32, new int[]{1, 224, 224, 3})
.setOutputFormat(0, FirebaseModelDataType.FLOAT32, new int[]{1, 1000})
.build();
float[][][][] input = new float[1][224][224][3];
// Then populate with input data.
FirebaseModelInputs inputs = new FirebaseModelInputs.Builder()
.add(input)
.build();
interpreter.run(inputs, inputOutputOptions)
.addOnSuccessListener(
new OnSuccessListener<FirebaseModelOutputs>() {
@Override
public void onSuccess(FirebaseModelOutputs result) {
// ...
}
})
.addOnFailureListener(
new OnFailureListener() {
@Override
public void onFailure(@NonNull Exception e) {
// Task failed with an exception
// ...
}
});
Después
Kotlin+KTX
val inBufferSize = 1 * 224 * 224 * 3 * java.lang.Float.SIZE / java.lang.Byte.SIZE
val inputBuffer = ByteBuffer.allocateDirect(inBufferSize).order(ByteOrder.nativeOrder())
// Then populate with input data.
val outBufferSize = 1 * 1000 * java.lang.Float.SIZE / java.lang.Byte.SIZE
val outputBuffer = ByteBuffer.allocateDirect(outBufferSize).order(ByteOrder.nativeOrder())
interpreter.run(inputBuffer, outputBuffer)
Java
int inBufferSize = 1 * 224 * 224 * 3 * java.lang.Float.SIZE / java.lang.Byte.SIZE;
ByteBuffer inputBuffer =
ByteBuffer.allocateDirect(inBufferSize).order(ByteOrder.nativeOrder());
// Then populate with input data.
int outBufferSize = 1 * 1000 * java.lang.Float.SIZE / java.lang.Byte.SIZE;
ByteBuffer outputBuffer =
ByteBuffer.allocateDirect(outBufferSize).order(ByteOrder.nativeOrder());
interpreter.run(inputBuffer, outputBuffer);
4. Actualiza el código de administración de salida
Por último, en lugar de obtener los datos de salida del modelo con el método getOutput()
del objeto FirebaseModelOutputs
, convierte los datos de salida de ByteBuffer
en cualquier estructura que sea conveniente para tu caso de uso.
Por ejemplo, si realizas la clasificación, puedes hacer cambios como el siguiente:
Antes
Kotlin+KTX
val output = result.getOutput(0)
val probabilities = output[0]
try {
val reader = BufferedReader(InputStreamReader(assets.open("custom_labels.txt")))
for (probability in probabilities) {
val label: String = reader.readLine()
println("$label: $probability")
}
} catch (e: IOException) {
// File not found?
}
Java
float[][] output = result.getOutput(0);
float[] probabilities = output[0];
try {
BufferedReader reader = new BufferedReader(
new InputStreamReader(getAssets().open("custom_labels.txt")));
for (float probability : probabilities) {
String label = reader.readLine();
Log.i(TAG, String.format("%s: %1.4f", label, probability));
}
} catch (IOException e) {
// File not found?
}
Después
Kotlin+KTX
modelOutput.rewind()
val probabilities = modelOutput.asFloatBuffer()
try {
val reader = BufferedReader(
InputStreamReader(assets.open("custom_labels.txt")))
for (i in probabilities.capacity()) {
val label: String = reader.readLine()
val probability = probabilities.get(i)
println("$label: $probability")
}
} catch (e: IOException) {
// File not found?
}
Java
modelOutput.rewind();
FloatBuffer probabilities = modelOutput.asFloatBuffer();
try {
BufferedReader reader = new BufferedReader(
new InputStreamReader(getAssets().open("custom_labels.txt")));
for (int i = 0; i < probabilities.capacity(); i++) {
String label = reader.readLine();
float probability = probabilities.get(i);
Log.i(TAG, String.format("%s: %1.4f", label, probability));
}
} catch (IOException e) {
// File not found?
}