Nhận dạng văn bản trong hình ảnh bằng Bộ công cụ học máy trên Android

Bạn có thể dùng Bộ công cụ học máy để nhận dạng văn bản trong hình ảnh. Bộ công cụ học máy có cả API đa năng phù hợp để nhận dạng văn bản trong hình ảnh, chẳng hạn như văn bản của biển báo đường phố và một API được tối ưu hoá để nhận dạng văn bản của tài liệu. API đa năng có cả mô hình trên thiết bị và dựa trên đám mây. Tính năng nhận dạng văn bản trong tài liệu chỉ có dưới dạng mô hình dựa trên đám mây. Hãy xem thông tin tổng quan để biết thông tin so sánh giữa các mô hình trên đám mây và trên thiết bị.

Trước khi bắt đầu

  1. Nếu bạn chưa thực hiện, hãy thêm Firebase vào dự án Android.
  2. Thêm các phần phụ thuộc cho thư viện ML Kit Android vào tệp Gradle (ở cấp ứng dụng) trong mô-đun của bạn (thường là app/build.gradle):
    apply plugin: 'com.android.application'
    apply plugin: 'com.google.gms.google-services'
    
    dependencies {
      // ...
    
      implementation 'com.google.firebase:firebase-ml-vision:24.0.3'
    }
  3. Không bắt buộc nhưng nên dùng: Nếu bạn sử dụng API trên thiết bị, hãy định cấu hình ứng dụng để tự động tải mô hình học máy xuống thiết bị sau khi ứng dụng được cài đặt từ Cửa hàng Play.

    Để thực hiện việc này, hãy thêm khai báo sau vào tệp AndroidManifest.xml của ứng dụng:

    <application ...>
      ...
      <meta-data
          android:name="com.google.firebase.ml.vision.DEPENDENCIES"
          android:value="ocr" />
      <!-- To use multiple models: android:value="ocr,model2,model3" -->
    </application>
    Nếu bạn không bật tính năng tải mô hình xuống tại thời điểm cài đặt, thì mô hình sẽ được tải xuống vào lần đầu tiên bạn chạy trình phát hiện trên thiết bị. Những yêu cầu bạn đưa ra trước khi quá trình tải xuống hoàn tất sẽ không mang lại kết quả.
  4. Nếu muốn sử dụng mô hình dựa trên đám mây và bạn chưa bật API dựa trên đám mây cho dự án của mình, hãy bật ngay:

    1. Mở trang API ML Kit của bảng điều khiển Firebase.
    2. Nếu bạn chưa nâng cấp dự án của mình lên gói giá linh hoạt, hãy nhấp vào Nâng cấp để nâng cấp. (Bạn sẽ chỉ được nhắc nâng cấp nếu dự án của bạn không sử dụng gói linh hoạt.)

      Chỉ những dự án ở cấp Blaze mới có thể sử dụng các API dựa trên đám mây.

    3. Nếu bạn chưa bật API dựa trên đám mây, hãy nhấp vào Bật API dựa trên đám mây.

    Nếu chỉ muốn sử dụng mô hình trên thiết bị, bạn có thể bỏ qua bước này.

Bây giờ, bạn đã sẵn sàng bắt đầu nhận dạng văn bản trong hình ảnh.

Nguyên tắc về hình ảnh đầu vào

  • Để Bộ công cụ học máy nhận dạng chính xác văn bản, hình ảnh đầu vào phải chứa văn bản được biểu thị bằng đủ dữ liệu pixel. Lý tưởng nhất là đối với văn bản Latinh, mỗi ký tự phải có kích thước tối thiểu là 16x16 pixel. Đối với văn bản tiếng Trung, tiếng Nhật và tiếng Hàn (chỉ được các API dựa trên đám mây hỗ trợ), mỗi ký tự phải có kích thước 24x24 pixel. Đối với tất cả các ngôn ngữ, thường không có lợi ích nào về độ chính xác khi các ký tự lớn hơn 24x24 pixel.

    Ví dụ: hình ảnh 640x480 có thể phù hợp để quét một danh thiếp chiếm toàn bộ chiều rộng của hình ảnh. Để quét một tài liệu được in trên giấy cỡ chữ, bạn có thể cần hình ảnh có kích thước 720x1280 pixel.

  • Hình ảnh bị mờ có thể làm giảm độ chính xác của tính năng nhận dạng văn bản. Nếu bạn không nhận được kết quả chấp nhận được, hãy thử yêu cầu người dùng chụp lại hình ảnh.

  • Nếu đang nhận dạng văn bản trong một ứng dụng theo thời gian thực, bạn cũng có thể muốn xem xét kích thước tổng thể của hình ảnh đầu vào. Các hình ảnh nhỏ hơn có thể được xử lý nhanh hơn, vì vậy, để giảm độ trễ, hãy chụp ảnh ở độ phân giải thấp hơn (lưu ý các yêu cầu về độ chính xác ở trên) và đảm bảo rằng văn bản chiếm phần lớn hình ảnh có thể. Ngoài ra, hãy xem Mẹo cải thiện hiệu suất theo thời gian thực.


Nhận dạng văn bản trong hình ảnh

Để nhận dạng văn bản trong hình ảnh bằng cách sử dụng mô hình trên thiết bị hoặc dựa trên đám mây, hãy chạy trình nhận dạng văn bản như mô tả bên dưới.

1. Chạy trình nhận dạng văn bản

Để nhận dạng văn bản trong hình ảnh, hãy tạo một đối tượng FirebaseVisionImage từ Bitmap, media.Image, ByteBuffer, mảng byte hoặc một tệp trên thiết bị. Sau đó, hãy truyền đối tượng FirebaseVisionImage đến phương thức processImage của FirebaseVisionTextRecognizer.

  1. Tạo một đối tượng FirebaseVisionImage từ hình ảnh của bạn.

    • Để tạo một đối tượng FirebaseVisionImage từ một đối tượng media.Image, chẳng hạn như khi chụp ảnh từ camera của thiết bị, hãy truyền đối tượng media.Image và độ xoay của hình ảnh đến FirebaseVisionImage.fromMediaImage().

      Nếu sử dụng thư viện CameraX, các lớp OnImageCapturedListenerImageAnalysis.Analyzer sẽ tính toán giá trị xoay cho bạn, vì vậy, bạn chỉ cần chuyển đổi giá trị xoay thành một trong các hằng số ROTATION_ của ML Kit trước khi gọi FirebaseVisionImage.fromMediaImage():

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Kit Vision API
              // ...
          }
      }

      Kotlin

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Kit Vision API
                  // ...
              }
          }
      }

      Nếu không dùng thư viện máy ảnh cho phép bạn biết độ xoay của hình ảnh, bạn có thể tính toán độ xoay đó dựa trên độ xoay của thiết bị và hướng của cảm biến máy ảnh trong thiết bị:

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Kotlin

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      Sau đó, truyền đối tượng media.Image và giá trị xoay đến FirebaseVisionImage.fromMediaImage():

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

      Kotlin

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
    • Để tạo một đối tượng FirebaseVisionImage từ một URI tệp, hãy truyền ngữ cảnh ứng dụng và URI tệp đến FirebaseVisionImage.fromFilePath(). Điều này hữu ích khi bạn dùng ý định ACTION_GET_CONTENT để nhắc người dùng chọn một hình ảnh trong ứng dụng thư viện của họ.

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }

      Kotlin

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }
    • Để tạo một đối tượng FirebaseVisionImage từ ByteBuffer hoặc một mảng byte, trước tiên, hãy tính toán hướng xoay hình ảnh như mô tả ở trên cho dữ liệu đầu vào media.Image.

      Sau đó, hãy tạo một đối tượng FirebaseVisionImageMetadata chứa chiều cao, chiều rộng, định dạng mã hoá màu và hướng xoay của hình ảnh:

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Kotlin

      val metadata = FirebaseVisionImageMetadata.Builder()
              .setWidth(480) // 480x360 is typically sufficient for
              .setHeight(360) // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build()

      Sử dụng bộ đệm hoặc mảng và đối tượng siêu dữ liệu để tạo một đối tượng FirebaseVisionImage:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

      Kotlin

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
    • Cách tạo một đối tượng FirebaseVisionImage từ một đối tượng Bitmap:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

      Kotlin

      val image = FirebaseVisionImage.fromBitmap(bitmap)
      Hình ảnh do đối tượng Bitmap biểu thị phải thẳng đứng và không cần xoay thêm.

  2. Nhận một thực thể của FirebaseVisionTextRecognizer.

    Cách sử dụng mô hình trên thiết bị:

    Java

    FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance()
            .getOnDeviceTextRecognizer();

    Kotlin

    val detector = FirebaseVision.getInstance()
            .onDeviceTextRecognizer

    Cách sử dụng mô hình dựa trên đám mây:

    Java

    FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance()
            .getCloudTextRecognizer();
    // Or, to change the default settings:
    //   FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance()
    //          .getCloudTextRecognizer(options);
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FirebaseVisionCloudTextRecognizerOptions options = new FirebaseVisionCloudTextRecognizerOptions.Builder()
            .setLanguageHints(Arrays.asList("en", "hi"))
            .build();

    Kotlin

    val detector = FirebaseVision.getInstance().cloudTextRecognizer
    // Or, to change the default settings:
    // val detector = FirebaseVision.getInstance().getCloudTextRecognizer(options)
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    val options = FirebaseVisionCloudTextRecognizerOptions.Builder()
            .setLanguageHints(listOf("en", "hi"))
            .build()
  3. Cuối cùng, hãy truyền hình ảnh vào phương thức processImage:

    Java

    Task<FirebaseVisionText> result =
            detector.processImage(image)
                    .addOnSuccessListener(new OnSuccessListener<FirebaseVisionText>() {
                        @Override
                        public void onSuccess(FirebaseVisionText firebaseVisionText) {
                            // Task completed successfully
                            // ...
                        }
                    })
                    .addOnFailureListener(
                            new OnFailureListener() {
                                @Override
                                public void onFailure(@NonNull Exception e) {
                                    // Task failed with an exception
                                    // ...
                                }
                            });

    Kotlin

    val result = detector.processImage(image)
            .addOnSuccessListener { firebaseVisionText ->
                // Task completed successfully
                // ...
            }
            .addOnFailureListener { e ->
                // Task failed with an exception
                // ...
            }

2. Trích xuất văn bản từ các khối văn bản được nhận dạng

Nếu thao tác nhận dạng văn bản thành công, một đối tượng FirebaseVisionText sẽ được truyền đến trình nghe thành công. Đối tượng FirebaseVisionText chứa toàn bộ văn bản được nhận dạng trong hình ảnh và không có hoặc có nhiều đối tượng TextBlock.

Mỗi TextBlock đại diện cho một khối văn bản hình chữ nhật, chứa từ 0 hoặc nhiều đối tượng Line. Mỗi đối tượng Line chứa từ 0 đối tượng Element trở lên, đại diện cho các từ và thực thể giống từ (ngày, số, v.v.).

Đối với mỗi đối tượng TextBlock, LineElement, bạn có thể lấy văn bản được nhận dạng trong khu vực và toạ độ ranh giới của khu vực.

Ví dụ:

Java

String resultText = result.getText();
for (FirebaseVisionText.TextBlock block: result.getTextBlocks()) {
    String blockText = block.getText();
    Float blockConfidence = block.getConfidence();
    List<RecognizedLanguage> blockLanguages = block.getRecognizedLanguages();
    Point[] blockCornerPoints = block.getCornerPoints();
    Rect blockFrame = block.getBoundingBox();
    for (FirebaseVisionText.Line line: block.getLines()) {
        String lineText = line.getText();
        Float lineConfidence = line.getConfidence();
        List<RecognizedLanguage> lineLanguages = line.getRecognizedLanguages();
        Point[] lineCornerPoints = line.getCornerPoints();
        Rect lineFrame = line.getBoundingBox();
        for (FirebaseVisionText.Element element: line.getElements()) {
            String elementText = element.getText();
            Float elementConfidence = element.getConfidence();
            List<RecognizedLanguage> elementLanguages = element.getRecognizedLanguages();
            Point[] elementCornerPoints = element.getCornerPoints();
            Rect elementFrame = element.getBoundingBox();
        }
    }
}

Kotlin

val resultText = result.text
for (block in result.textBlocks) {
    val blockText = block.text
    val blockConfidence = block.confidence
    val blockLanguages = block.recognizedLanguages
    val blockCornerPoints = block.cornerPoints
    val blockFrame = block.boundingBox
    for (line in block.lines) {
        val lineText = line.text
        val lineConfidence = line.confidence
        val lineLanguages = line.recognizedLanguages
        val lineCornerPoints = line.cornerPoints
        val lineFrame = line.boundingBox
        for (element in line.elements) {
            val elementText = element.text
            val elementConfidence = element.confidence
            val elementLanguages = element.recognizedLanguages
            val elementCornerPoints = element.cornerPoints
            val elementFrame = element.boundingBox
        }
    }
}

Mẹo cải thiện hiệu suất theo thời gian thực

Nếu bạn muốn sử dụng mô hình trên thiết bị để nhận dạng văn bản trong một ứng dụng theo thời gian thực, hãy làm theo các nguyên tắc sau để đạt được tốc độ khung hình tốt nhất:

  • Điều chỉnh tốc độ gọi đến trình nhận dạng văn bản. Nếu có một khung hình video mới trong khi trình nhận dạng văn bản đang chạy, hãy thả khung hình đó.
  • Nếu bạn đang sử dụng đầu ra của trình nhận dạng văn bản để phủ đồ hoạ lên hình ảnh đầu vào, trước tiên hãy lấy kết quả từ Bộ công cụ máy học, sau đó kết xuất hình ảnh và phủ lên trong một bước. Bằng cách này, bạn chỉ cần kết xuất vào bề mặt hiển thị một lần cho mỗi khung hình đầu vào.
  • Nếu bạn sử dụng API Camera2, hãy chụp ảnh ở định dạng ImageFormat.YUV_420_888.

    Nếu bạn sử dụng Camera API cũ, hãy chụp ảnh ở định dạng ImageFormat.NV21.

  • Hãy cân nhắc chụp ảnh ở độ phân giải thấp hơn. Tuy nhiên, bạn cũng cần lưu ý các yêu cầu về kích thước hình ảnh của API này.

Các bước tiếp theo


Nhận dạng văn bản trong hình ảnh của tài liệu

Để nhận dạng văn bản của một tài liệu, hãy định cấu hình và chạy trình nhận dạng văn bản tài liệu dựa trên đám mây như mô tả bên dưới.

API nhận dạng văn bản trong tài liệu (được mô tả bên dưới) cung cấp một giao diện thuận tiện hơn khi làm việc với hình ảnh của tài liệu. Tuy nhiên, nếu muốn dùng giao diện do API FirebaseVisionTextRecognizer cung cấp, bạn có thể dùng giao diện này để quét tài liệu bằng cách định cấu hình trình nhận dạng văn bản trên đám mây để sử dụng mô hình văn bản dày đặc.

Cách sử dụng API nhận dạng văn bản trong tài liệu:

1. Chạy trình nhận dạng văn bản

Để nhận dạng văn bản trong hình ảnh, hãy tạo một đối tượng FirebaseVisionImage từ Bitmap, media.Image, ByteBuffer, mảng byte hoặc một tệp trên thiết bị. Sau đó, hãy truyền đối tượng FirebaseVisionImage đến phương thức processImage của FirebaseVisionDocumentTextRecognizer.

  1. Tạo một đối tượng FirebaseVisionImage từ hình ảnh của bạn.

    • Để tạo một đối tượng FirebaseVisionImage từ một đối tượng media.Image, chẳng hạn như khi chụp ảnh từ camera của thiết bị, hãy truyền đối tượng media.Image và độ xoay của hình ảnh đến FirebaseVisionImage.fromMediaImage().

      Nếu sử dụng thư viện CameraX, các lớp OnImageCapturedListenerImageAnalysis.Analyzer sẽ tính toán giá trị xoay cho bạn, vì vậy, bạn chỉ cần chuyển đổi giá trị xoay thành một trong các hằng số ROTATION_ của ML Kit trước khi gọi FirebaseVisionImage.fromMediaImage():

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Kit Vision API
              // ...
          }
      }

      Kotlin

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Kit Vision API
                  // ...
              }
          }
      }

      Nếu không dùng thư viện máy ảnh cho phép bạn biết độ xoay của hình ảnh, bạn có thể tính toán độ xoay đó dựa trên độ xoay của thiết bị và hướng của cảm biến máy ảnh trong thiết bị:

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Kotlin

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      Sau đó, truyền đối tượng media.Image và giá trị xoay đến FirebaseVisionImage.fromMediaImage():

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

      Kotlin

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
    • Để tạo một đối tượng FirebaseVisionImage từ một URI tệp, hãy truyền ngữ cảnh ứng dụng và URI tệp đến FirebaseVisionImage.fromFilePath(). Điều này hữu ích khi bạn dùng ý định ACTION_GET_CONTENT để nhắc người dùng chọn một hình ảnh trong ứng dụng thư viện của họ.

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }

      Kotlin

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }
    • Để tạo một đối tượng FirebaseVisionImage từ ByteBuffer hoặc một mảng byte, trước tiên, hãy tính toán hướng xoay hình ảnh như mô tả ở trên cho dữ liệu đầu vào media.Image.

      Sau đó, hãy tạo một đối tượng FirebaseVisionImageMetadata chứa chiều cao, chiều rộng, định dạng mã hoá màu và hướng xoay của hình ảnh:

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Kotlin

      val metadata = FirebaseVisionImageMetadata.Builder()
              .setWidth(480) // 480x360 is typically sufficient for
              .setHeight(360) // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build()

      Sử dụng bộ đệm hoặc mảng và đối tượng siêu dữ liệu để tạo một đối tượng FirebaseVisionImage:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

      Kotlin

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
    • Cách tạo một đối tượng FirebaseVisionImage từ một đối tượng Bitmap:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

      Kotlin

      val image = FirebaseVisionImage.fromBitmap(bitmap)
      Hình ảnh do đối tượng Bitmap biểu thị phải thẳng đứng và không cần xoay thêm.

  2. Lấy một thực thể của FirebaseVisionDocumentTextRecognizer:

    Java

    FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance()
            .getCloudDocumentTextRecognizer();
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FirebaseVisionCloudDocumentRecognizerOptions options =
            new FirebaseVisionCloudDocumentRecognizerOptions.Builder()
                    .setLanguageHints(Arrays.asList("en", "hi"))
                    .build();
    FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance()
            .getCloudDocumentTextRecognizer(options);

    Kotlin

    val detector = FirebaseVision.getInstance()
            .cloudDocumentTextRecognizer
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    val options = FirebaseVisionCloudDocumentRecognizerOptions.Builder()
            .setLanguageHints(listOf("en", "hi"))
            .build()
    val detector = FirebaseVision.getInstance()
            .getCloudDocumentTextRecognizer(options)

  3. Cuối cùng, hãy truyền hình ảnh vào phương thức processImage:

    Java

    detector.processImage(myImage)
            .addOnSuccessListener(new OnSuccessListener<FirebaseVisionDocumentText>() {
                @Override
                public void onSuccess(FirebaseVisionDocumentText result) {
                    // Task completed successfully
                    // ...
                }
            })
            .addOnFailureListener(new OnFailureListener() {
                @Override
                public void onFailure(@NonNull Exception e) {
                    // Task failed with an exception
                    // ...
                }
            });

    Kotlin

    detector.processImage(myImage)
            .addOnSuccessListener { firebaseVisionDocumentText ->
                // Task completed successfully
                // ...
            }
            .addOnFailureListener { e ->
                // Task failed with an exception
                // ...
            }

2. Trích xuất văn bản từ các khối văn bản được nhận dạng

Nếu hoạt động nhận dạng văn bản thành công, thì hoạt động này sẽ trả về một đối tượng FirebaseVisionDocumentText. Đối tượng FirebaseVisionDocumentText chứa toàn bộ văn bản được nhận dạng trong hình ảnh và một hệ phân cấp các đối tượng phản ánh cấu trúc của tài liệu được nhận dạng:

Đối với mỗi đối tượng Block, Paragraph, WordSymbol, bạn có thể nhận được văn bản được nhận dạng trong khu vực và toạ độ đường viền của khu vực.

Ví dụ:

Java

String resultText = result.getText();
for (FirebaseVisionDocumentText.Block block: result.getBlocks()) {
    String blockText = block.getText();
    Float blockConfidence = block.getConfidence();
    List<RecognizedLanguage> blockRecognizedLanguages = block.getRecognizedLanguages();
    Rect blockFrame = block.getBoundingBox();
    for (FirebaseVisionDocumentText.Paragraph paragraph: block.getParagraphs()) {
        String paragraphText = paragraph.getText();
        Float paragraphConfidence = paragraph.getConfidence();
        List<RecognizedLanguage> paragraphRecognizedLanguages = paragraph.getRecognizedLanguages();
        Rect paragraphFrame = paragraph.getBoundingBox();
        for (FirebaseVisionDocumentText.Word word: paragraph.getWords()) {
            String wordText = word.getText();
            Float wordConfidence = word.getConfidence();
            List<RecognizedLanguage> wordRecognizedLanguages = word.getRecognizedLanguages();
            Rect wordFrame = word.getBoundingBox();
            for (FirebaseVisionDocumentText.Symbol symbol: word.getSymbols()) {
                String symbolText = symbol.getText();
                Float symbolConfidence = symbol.getConfidence();
                List<RecognizedLanguage> symbolRecognizedLanguages = symbol.getRecognizedLanguages();
                Rect symbolFrame = symbol.getBoundingBox();
            }
        }
    }
}

Kotlin

val resultText = result.text
for (block in result.blocks) {
    val blockText = block.text
    val blockConfidence = block.confidence
    val blockRecognizedLanguages = block.recognizedLanguages
    val blockFrame = block.boundingBox
    for (paragraph in block.paragraphs) {
        val paragraphText = paragraph.text
        val paragraphConfidence = paragraph.confidence
        val paragraphRecognizedLanguages = paragraph.recognizedLanguages
        val paragraphFrame = paragraph.boundingBox
        for (word in paragraph.words) {
            val wordText = word.text
            val wordConfidence = word.confidence
            val wordRecognizedLanguages = word.recognizedLanguages
            val wordFrame = word.boundingBox
            for (symbol in word.symbols) {
                val symbolText = symbol.text
                val symbolConfidence = symbol.confidence
                val symbolRecognizedLanguages = symbol.recognizedLanguages
                val symbolFrame = symbol.boundingBox
            }
        }
    }
}

Các bước tiếp theo