ML Kit を使用すると、バーコードの認識やデコードができます。
始める前に
- まだ Firebase を Android プロジェクトに追加していない場合は追加します。
- ML Kit Android ライブラリの依存関係をモジュール(アプリレベル)の Gradle ファイル(通常は
app/build.gradle
)に追加します。apply plugin: 'com.android.application' apply plugin: 'com.google.gms.google-services' dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:24.0.3' implementation 'com.google.firebase:firebase-ml-vision-barcode-model:16.0.1' }
入力画像に関するガイドライン
-
ML Kit でバーコードを正確に読み取るには、入力画像に含まれているバーコードが十分なピクセルデータによって表現されている必要があります。
個々のピクセルデータの前提条件は、バーコードの種類とエンコードされるデータの量によって異なります(ほとんどのバーコードは可変長のペイロードに対応しています)。一般に、バーコードの幅は 2 ピクセル以上にする必要があります(2 次元コードの場合は高さを 2 ピクセル以上にします)。
たとえば、EAN-13 バーコードの場合、単位幅が 1、2、3、4 のバーとスペースから構成されているため、EAN-13 バーコードの画像では、少なくとも 2、4、6、8 ピクセルのバーとスペースを使用することが理想的です。EAN-13 バーコードの幅は合計で 95 単位になるため、バーコードの幅は 190 ピクセル以上にする必要があります。
PDF417 のような高密度のフォーマットの場合、ML Kit で読み取り精度を高めるため、より大きなピクセル数が必要になります。たとえば、PDF417 コードは 1 行に最大 34 個の 17 単位幅のワードを入れることができるため、1,156 ピクセル以上の幅が理想的です。
-
画像がぼやけていると、スキャン精度が低下する可能性があります。満足のいく結果が得られない場合は、ユーザーに画像をキャプチャし直すよう求めてください。
-
一般的なアプリケーションでは、カメラから遠く離れた位置からバーコードを検出できる、1,280x720 や 1,920x1,080 などの高解像度の画像を使用することをおすすめします。
レイテンシが重要なアプリケーションでは、低解像度で画像をキャプチャすることでパフォーマンスを改善できますが、入力画像の大部分がバーコードである必要があります。リアルタイムのパフォーマンスを改善するためのヒントもご覧ください。
1. バーコード検出器を構成する
読み取るバーコード形式がわかっている場合は、その形式のみを検出するように構成して、バーコード検出器の速度を向上させることができます。たとえば、Aztec コードと QR コードのみを検出するには、次の例のように FirebaseVisionBarcodeDetectorOptions
オブジェクトをビルドします。
Java
FirebaseVisionBarcodeDetectorOptions options = new FirebaseVisionBarcodeDetectorOptions.Builder() .setBarcodeFormats( FirebaseVisionBarcode.FORMAT_QR_CODE, FirebaseVisionBarcode.FORMAT_AZTEC) .build();
Kotlin
val options = FirebaseVisionBarcodeDetectorOptions.Builder() .setBarcodeFormats( FirebaseVisionBarcode.FORMAT_QR_CODE, FirebaseVisionBarcode.FORMAT_AZTEC) .build()
次の形式がサポートされています。
- コード 128(
FORMAT_CODE_128
) - コード 39(
FORMAT_CODE_39
) - コード 93(
FORMAT_CODE_93
) - Codabar(
FORMAT_CODABAR
) - EAN-13(
FORMAT_EAN_13
) - EAN-8(
FORMAT_EAN_8
) - ITF(
FORMAT_ITF
) - UPC-A(
FORMAT_UPC_A
) - UPC-E(
FORMAT_UPC_E
) - QR コード(
FORMAT_QR_CODE
) - PDF417(
FORMAT_PDF417
) - Aztec(
FORMAT_AZTEC
) - Data Matrix(
FORMAT_DATA_MATRIX
)
2. バーコード検出器を実行する
画像内のバーコードを認識するには、Bitmap
、media.Image
、ByteBuffer
、バイト配列、デバイス上のファイルから FirebaseVisionImage
オブジェクトを作成します。次に、FirebaseVisionImage
オブジェクトを FirebaseVisionBarcodeDetector
の detectInImage
メソッドに渡します。
画像から
FirebaseVisionImage
オブジェクトを作成します。-
FirebaseVisionImage
オブジェクトをmedia.Image
オブジェクトから作成するには(デバイスのカメラから画像をキャプチャする場合など)、media.Image
オブジェクトと画像の回転をFirebaseVisionImage.fromMediaImage()
に渡します。CameraX ライブラリを使用する場合は、
OnImageCapturedListener
クラスとImageAnalysis.Analyzer
クラスによって回転値が計算されるので、FirebaseVisionImage.fromMediaImage()
を呼び出す前に、その回転を ML Kit のROTATION_
定数のいずれかに変換するだけで済みます。Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
画像の回転を取得するカメラ ライブラリを使用しない場合は、デバイスの回転とデバイス内のカメラセンサーの向きから計算できます。
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
次に、
media.Image
オブジェクトと回転値をFirebaseVisionImage.fromMediaImage()
に渡します。Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
FirebaseVisionImage
オブジェクトをファイルの URI から作成するには、アプリ コンテキストとファイルの URI をFirebaseVisionImage.fromFilePath()
に渡します。これは、ACTION_GET_CONTENT
インテントを使用して、ギャラリー アプリから画像を選択するようにユーザーに促すときに便利です。Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
FirebaseVisionImage
オブジェクトをByteBuffer
またはバイト配列から作成するには、media.Image
入力について上記のように、まず画像の回転を計算します。次に、画像の高さ、幅、カラー エンコード形式、回転を含む
FirebaseVisionImageMetadata
オブジェクトを作成します。Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
メタデータ オブジェクトと、バッファまたは配列を使用して、
FirebaseVisionImage
オブジェクトを作成します。Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
FirebaseVisionImage
オブジェクトをBitmap
オブジェクトから作成するコードは、以下のとおりです。Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
オブジェクトによって表される画像は、これ以上回転させる必要がないように、正しい向きになっている必要があります。
-
FirebaseVisionBarcodeDetector
のインスタンスを取得します。Java
FirebaseVisionBarcodeDetector detector = FirebaseVision.getInstance() .getVisionBarcodeDetector(); // Or, to specify the formats to recognize: // FirebaseVisionBarcodeDetector detector = FirebaseVision.getInstance() // .getVisionBarcodeDetector(options);
Kotlin
val detector = FirebaseVision.getInstance() .visionBarcodeDetector // Or, to specify the formats to recognize: // val detector = FirebaseVision.getInstance() // .getVisionBarcodeDetector(options)
最後に、画像を
detectInImage
メソッドに渡します。Java
Task<List<FirebaseVisionBarcode>> result = detector.detectInImage(image) .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionBarcode>>() { @Override public void onSuccess(List<FirebaseVisionBarcode> barcodes) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Kotlin
val result = detector.detectInImage(image) .addOnSuccessListener { barcodes -> // Task completed successfully // ... } .addOnFailureListener { // Task failed with an exception // ... }
3. バーコードから情報を取得する
バーコード認識オペレーションが成功すると、FirebaseVisionBarcode
オブジェクトのリストが成功リスナーに渡されます。各 FirebaseVisionBarcode
オブジェクトは画像内で検出されたバーコードを表します。バーコードごとに、入力画像の境界座標と、バーコードによってエンコードされた元データを取得できます。また、バーコード検出器がバーコードによってエンコードされたデータのタイプを判別できた場合は、解析されたデータを含むオブジェクトも取得できます。
例:
Java
for (FirebaseVisionBarcode barcode: barcodes) { Rect bounds = barcode.getBoundingBox(); Point[] corners = barcode.getCornerPoints(); String rawValue = barcode.getRawValue(); int valueType = barcode.getValueType(); // See API reference for complete list of supported types switch (valueType) { case FirebaseVisionBarcode.TYPE_WIFI: String ssid = barcode.getWifi().getSsid(); String password = barcode.getWifi().getPassword(); int type = barcode.getWifi().getEncryptionType(); break; case FirebaseVisionBarcode.TYPE_URL: String title = barcode.getUrl().getTitle(); String url = barcode.getUrl().getUrl(); break; } }
Kotlin
for (barcode in barcodes) { val bounds = barcode.boundingBox val corners = barcode.cornerPoints val rawValue = barcode.rawValue val valueType = barcode.valueType // See API reference for complete list of supported types when (valueType) { FirebaseVisionBarcode.TYPE_WIFI -> { val ssid = barcode.wifi!!.ssid val password = barcode.wifi!!.password val type = barcode.wifi!!.encryptionType } FirebaseVisionBarcode.TYPE_URL -> { val title = barcode.url!!.title val url = barcode.url!!.url } } }
リアルタイムのパフォーマンスを改善するためのヒント
リアルタイムのアプリケーションでバーコードをスキャンする場合は、適切なフレームレートを得るために次のガイドラインに従ってください。
-
カメラのネイティブ解像度で入力をキャプチャしないでください。一部のデバイスでは、ネイティブ解像度で入力をキャプチャすると、非常に大きい(10 メガピクセル以上の)画像が生成されます。レイテンシが非常に低くなるだけで精度が向上するわけではありません。代わりに、バーコード検出に必要なサイズをカメラからリクエストしてください。サイズは通常 2 メガピクセル以下です。
スキャン速度が重要な場合は、画像キャプチャの解像度をさらに下げることができます。ただし、上記の最小バーコード サイズの要件に注意してください。
- 検出器の呼び出しのスロットル調整を行います。検出器の実行中に新しい動画フレームが使用可能になった場合は、そのフレームをドロップします。
- 検出器の出力を使用して入力画像の上にグラフィックスをオーバーレイする場合は、まず ML Kit から検出結果を取得し、画像とオーバーレイを 1 つのステップでレンダリングします。これにより、ディスプレイ サーフェスへのレンダリングは入力フレームごとに 1 回で済みます。
-
Camera2 API を使用する場合は、
ImageFormat.YUV_420_888
形式で画像をキャプチャします。古い Camera API を使用する場合は、
ImageFormat.NV21
形式で画像をキャプチャします。