iOS'te Firebase ML ile Görsellerdeki Metinleri Tanıma

Resimlerdeki metni tanımak için Firebase ML simgesini kullanabilirsiniz. Firebase ML, hem resimlerdeki metni (ör. sokak tabelası metni) tanımaya uygun genel amaçlı bir API'ye hem de belgelerin metnini tanımak için optimize edilmiş bir API'ye sahiptir.

Başlamadan önce

    Firebase'i uygulamanıza henüz eklemediyseniz başlangıç kılavuzundaki adımları uygulayarak ekleyin.

    Firebase bağımlılarını yüklemek ve yönetmek için Swift Package Manager'ı kullanın.

    Firebase SDK'larını Apple projenize eklemenin farklı yolları (ör. doğrudan çerçeveleri içe aktarma ve CocoaPods kullanma) hakkında bilgi edinmek için
    1. Xcode'da, uygulamanız açıkken Dosya > Paket Ekle'ye gidin.
    2. İstendiğinde Firebase Apple platformları SDK deposunu ekleyin:
    3.   https://github.com/firebase/firebase-ios-sdk.git
    4. Firebase ML kitaplığını seçin.
    5. -ObjC işaretini, hedefinizin derleme ayarlarının Diğer Bağlantı Oluşturucu İşaretleri bölümüne ekleyin.
    6. İşlem tamamlandığında Xcode, arka planda bağımlılarınızı otomatik olarak çözümlemeye ve indirmeye başlar.

    Ardından, uygulama içi bazı ayarları yapın:

    1. Uygulamanızda Firebase'i içe aktarın:

      Swift

      import FirebaseMLModelDownloader

      Objective-C

      @import FirebaseMLModelDownloader;
  1. Projeniz için bulut tabanlı API'leri henüz etkinleştirmediyseniz şimdi etkinleştirin:

    1. Firebase konsolunun Firebase ML API'leri sayfasını açın.
    2. Projenizi Blaze fiyatlandırma planına henüz yükseltmediyseniz bunu yapmak için Yükselt'i tıklayın. (Yükseltme işlemini yalnızca projeniz Blaze planında değilse yapmanız istenir.)

      Cloud tabanlı API'ler yalnızca Blaze düzeyindeki projelerde kullanılabilir.

    3. Bulut tabanlı API'ler etkinleştirilmemişse Bulut tabanlı API'leri etkinleştir'i tıklayın.

Artık resimlerdeki metinleri tanımaya hazırsınız.

Giriş resmi kuralları

  • Firebase ML'ün metni doğru şekilde tanıması için giriş resimlerinin, yeterli piksel verisiyle temsil edilen metin içermesi gerekir. İdeal olarak, Latin alfabesindeki her karakter en az 16x16 piksel olmalıdır. Çince, Japonca ve Korece metinlerde her karakter 24x24 piksel olmalıdır. Tüm diller için karakterlerin 24x24 pikselden büyük olmasının doğruluk açısından genellikle bir avantajı yoktur.

    Örneğin, 640x480 boyutunda bir resim, resmin tüm genişliğini kaplayan bir kartvizitin taranması için uygun olabilir. A4 kağıdına basılmış bir belgeyi taramak için 720x1280 piksel boyutunda bir resim gerekebilir.

  • Kötü resim odaklanması, metin tanıma doğruluğunu olumsuz etkileyebilir. Kabul edilebilir sonuçlar elde edemiyorsanız kullanıcıdan resmi yeniden çekmesini isteyin.


Resimlerdeki metinleri tanıyın

Bir resimdeki metni tanımak için metin tanımayı aşağıda açıklandığı şekilde çalıştırın.

1. Metin tanıyıcıyı çalıştırma

Resmi UIImage veya CMSampleBufferRef olarak VisionTextRecognizer'nin process(_:completion:) yöntemine iletin:

  1. cloudTextRecognizer çağrısı yaparak VisionTextRecognizer örneği alın:

    Swift

    let vision = Vision.vision()
    let textRecognizer = vision.cloudTextRecognizer()
    
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    let options = VisionCloudTextRecognizerOptions()
    options.languageHints = ["en", "hi"]
    let textRecognizer = vision.cloudTextRecognizer(options: options)

    Objective-C

    FIRVision *vision = [FIRVision vision];
    FIRVisionTextRecognizer *textRecognizer = [vision cloudTextRecognizer];
    
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FIRVisionCloudTextRecognizerOptions *options =
            [[FIRVisionCloudTextRecognizerOptions alloc] init];
    options.languageHints = @[@"en", @"hi"];
    FIRVisionTextRecognizer *textRecognizer = [vision cloudTextRecognizerWithOptions:options];
  2. Cloud Vision'u çağırmak için görüntünün base64 kodlu bir dize olarak biçimlendirilmesi gerekir. UIImage dosyasını işlemek için:

    Swift

    guard let imageData = uiImage.jpegData(compressionQuality: 1.0) else { return }
    let base64encodedImage = imageData.base64EncodedString()

    Objective-C

    NSData *imageData = UIImageJPEGRepresentation(uiImage, 1.0f);
    NSString *base64encodedImage =
      [imageData base64EncodedStringWithOptions:NSDataBase64Encoding76CharacterLineLength];
  3. Ardından, resmi process(_:completion:) yöntemine iletin:

    Swift

    textRecognizer.process(visionImage) { result, error in
      guard error == nil, let result = result else {
        // ...
        return
      }
    
      // Recognized text
    }

    Objective-C

    [textRecognizer processImage:image
                      completion:^(FIRVisionText *_Nullable result,
                                   NSError *_Nullable error) {
      if (error != nil || result == nil) {
        // ...
        return;
      }
    
      // Recognized text
    }];

2. Tanınan metin bloklarından metin ayıklama

Metin tanıma işlemi başarılı olursa bir VisionText nesnesi döndürülür. VisionText nesnesi, resimde tanınan metnin tamamını ve sıfır veya daha fazla VisionTextBlock nesnesini içerir.

Her VisionTextBlock, sıfır veya daha fazla VisionTextLine nesnesi içeren dikdörtgen bir metin bloğunu temsil eder. Her VisionTextLine nesnesi, kelimeleri ve kelime benzeri varlıkları (tarihler, sayılar vb.) temsil eden sıfır veya daha fazla VisionTextElement nesnesi içerir.

Her VisionTextBlock, VisionTextLine ve VisionTextElement nesnesi için bölgede tanınan metni ve bölgenin sınır koordinatlarını alabilirsiniz.

Örneğin:

Swift

let resultText = result.text
for block in result.blocks {
    let blockText = block.text
    let blockConfidence = block.confidence
    let blockLanguages = block.recognizedLanguages
    let blockCornerPoints = block.cornerPoints
    let blockFrame = block.frame
    for line in block.lines {
        let lineText = line.text
        let lineConfidence = line.confidence
        let lineLanguages = line.recognizedLanguages
        let lineCornerPoints = line.cornerPoints
        let lineFrame = line.frame
        for element in line.elements {
            let elementText = element.text
            let elementConfidence = element.confidence
            let elementLanguages = element.recognizedLanguages
            let elementCornerPoints = element.cornerPoints
            let elementFrame = element.frame
        }
    }
}

Objective-C

NSString *resultText = result.text;
for (FIRVisionTextBlock *block in result.blocks) {
  NSString *blockText = block.text;
  NSNumber *blockConfidence = block.confidence;
  NSArray<FIRVisionTextRecognizedLanguage *> *blockLanguages = block.recognizedLanguages;
  NSArray<NSValue *> *blockCornerPoints = block.cornerPoints;
  CGRect blockFrame = block.frame;
  for (FIRVisionTextLine *line in block.lines) {
    NSString *lineText = line.text;
    NSNumber *lineConfidence = line.confidence;
    NSArray<FIRVisionTextRecognizedLanguage *> *lineLanguages = line.recognizedLanguages;
    NSArray<NSValue *> *lineCornerPoints = line.cornerPoints;
    CGRect lineFrame = line.frame;
    for (FIRVisionTextElement *element in line.elements) {
      NSString *elementText = element.text;
      NSNumber *elementConfidence = element.confidence;
      NSArray<FIRVisionTextRecognizedLanguage *> *elementLanguages = element.recognizedLanguages;
      NSArray<NSValue *> *elementCornerPoints = element.cornerPoints;
      CGRect elementFrame = element.frame;
    }
  }
}

Sonraki adımlar


Belge resimlerindeki metinleri tanıma

Bir belgenin metnini tanımak için belge metin tanımayı aşağıda açıklandığı şekilde yapılandırın ve çalıştırın.

Aşağıda açıklanan belge metin tanıma API'si, belge resimleriyle çalışmak için daha uygun olması amaçlanan bir arayüz sağlar. Bununla birlikte, seyrek metin API'si tarafından sağlanan arayüzü tercih ediyorsanız bulut metin tanımayı yoğun metin modelini kullanacak şekilde yapılandırarak dokümanları taramak için bu API'yi kullanabilirsiniz.

Belge metin tanıma API'sini kullanmak için:

1. Metin tanıyıcıyı çalıştırma

Resmi UIImage veya CMSampleBufferRef olarak VisionDocumentTextRecognizer'nin process(_:completion:) yöntemine iletin:

  1. cloudDocumentTextRecognizer çağrısı yaparak VisionDocumentTextRecognizer örneği alın:

    Swift

    let vision = Vision.vision()
    let textRecognizer = vision.cloudDocumentTextRecognizer()
    
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    let options = VisionCloudDocumentTextRecognizerOptions()
    options.languageHints = ["en", "hi"]
    let textRecognizer = vision.cloudDocumentTextRecognizer(options: options)

    Objective-C

    FIRVision *vision = [FIRVision vision];
    FIRVisionDocumentTextRecognizer *textRecognizer = [vision cloudDocumentTextRecognizer];
    
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FIRVisionCloudDocumentTextRecognizerOptions *options =
            [[FIRVisionCloudDocumentTextRecognizerOptions alloc] init];
    options.languageHints = @[@"en", @"hi"];
    FIRVisionDocumentTextRecognizer *textRecognizer = [vision cloudDocumentTextRecognizerWithOptions:options];
  2. Cloud Vision'u çağırmak için görüntünün base64 kodlu bir dize olarak biçimlendirilmesi gerekir. UIImage dosyasını işlemek için:

    Swift

    guard let imageData = uiImage.jpegData(compressionQuality: 1.0) else { return }
    let base64encodedImage = imageData.base64EncodedString()

    Objective-C

    NSData *imageData = UIImageJPEGRepresentation(uiImage, 1.0f);
    NSString *base64encodedImage =
      [imageData base64EncodedStringWithOptions:NSDataBase64Encoding76CharacterLineLength];
  3. Ardından, resmi process(_:completion:) yöntemine iletin:

    Swift

    textRecognizer.process(visionImage) { result, error in
      guard error == nil, let result = result else {
        // ...
        return
      }
    
      // Recognized text
    }

    Objective-C

    [textRecognizer processImage:image
                      completion:^(FIRVisionDocumentText *_Nullable result,
                                   NSError *_Nullable error) {
      if (error != nil || result == nil) {
        // ...
        return;
      }
    
        // Recognized text
    }];

2. Tanınan metin bloklarından metin ayıklama

Metin tanıma işlemi başarılı olursa bir VisionDocumentText nesnesi döndürülür. VisionDocumentText nesnesi, resimde tanınan metnin tamamını ve tanınan belgenin yapısını yansıtan bir nesne hiyerarşisini içerir:

Her VisionDocumentTextBlock, VisionDocumentTextParagraph, VisionDocumentTextWord ve VisionDocumentTextSymbol nesnesi için bölgede tanınan metni ve bölgenin sınır koordinatlarını alabilirsiniz.

Örneğin:

Swift

let resultText = result.text
for block in result.blocks {
    let blockText = block.text
    let blockConfidence = block.confidence
    let blockRecognizedLanguages = block.recognizedLanguages
    let blockBreak = block.recognizedBreak
    let blockCornerPoints = block.cornerPoints
    let blockFrame = block.frame
    for paragraph in block.paragraphs {
        let paragraphText = paragraph.text
        let paragraphConfidence = paragraph.confidence
        let paragraphRecognizedLanguages = paragraph.recognizedLanguages
        let paragraphBreak = paragraph.recognizedBreak
        let paragraphCornerPoints = paragraph.cornerPoints
        let paragraphFrame = paragraph.frame
        for word in paragraph.words {
            let wordText = word.text
            let wordConfidence = word.confidence
            let wordRecognizedLanguages = word.recognizedLanguages
            let wordBreak = word.recognizedBreak
            let wordCornerPoints = word.cornerPoints
            let wordFrame = word.frame
            for symbol in word.symbols {
                let symbolText = symbol.text
                let symbolConfidence = symbol.confidence
                let symbolRecognizedLanguages = symbol.recognizedLanguages
                let symbolBreak = symbol.recognizedBreak
                let symbolCornerPoints = symbol.cornerPoints
                let symbolFrame = symbol.frame
            }
        }
    }
}

Objective-C

NSString *resultText = result.text;
for (FIRVisionDocumentTextBlock *block in result.blocks) {
  NSString *blockText = block.text;
  NSNumber *blockConfidence = block.confidence;
  NSArray<FIRVisionTextRecognizedLanguage *> *blockRecognizedLanguages = block.recognizedLanguages;
  FIRVisionTextRecognizedBreak *blockBreak = block.recognizedBreak;
  CGRect blockFrame = block.frame;
  for (FIRVisionDocumentTextParagraph *paragraph in block.paragraphs) {
    NSString *paragraphText = paragraph.text;
    NSNumber *paragraphConfidence = paragraph.confidence;
    NSArray<FIRVisionTextRecognizedLanguage *> *paragraphRecognizedLanguages = paragraph.recognizedLanguages;
    FIRVisionTextRecognizedBreak *paragraphBreak = paragraph.recognizedBreak;
    CGRect paragraphFrame = paragraph.frame;
    for (FIRVisionDocumentTextWord *word in paragraph.words) {
      NSString *wordText = word.text;
      NSNumber *wordConfidence = word.confidence;
      NSArray<FIRVisionTextRecognizedLanguage *> *wordRecognizedLanguages = word.recognizedLanguages;
      FIRVisionTextRecognizedBreak *wordBreak = word.recognizedBreak;
      CGRect wordFrame = word.frame;
      for (FIRVisionDocumentTextSymbol *symbol in word.symbols) {
        NSString *symbolText = symbol.text;
        NSNumber *symbolConfidence = symbol.confidence;
        NSArray<FIRVisionTextRecognizedLanguage *> *symbolRecognizedLanguages = symbol.recognizedLanguages;
        FIRVisionTextRecognizedBreak *symbolBreak = symbol.recognizedBreak;
        CGRect symbolFrame = symbol.frame;
      }
    }
  }
}

Sonraki adımlar