Você pode usar Firebase ML para reconhecer texto em imagens. O Firebase ML tem uma API de uso geral que reconhece texto em imagens, como o texto de uma placa de rua, e uma API otimizada para reconhecer texto de documentos.
Antes de começar
-
If you have not already added Firebase to your app, do so by following the
steps in the getting started guide.
- No Xcode, com seu projeto do app aberto, navegue até File > Add Packages.
- Quando solicitado, adicione o repositório do SDK do Firebase para as plataformas Apple:
- Escolha a biblioteca Firebase ML.
- Adicione a sinalização
-ObjC
à seção Outras sinalizações do vinculador das configurações de compilação do destino. - Quando terminar, o Xcode começará a resolver e fazer o download das dependências em segundo plano automaticamente.
- Importe o Firebase para seu app:
Swift
import FirebaseMLModelDownloader
Objective-C
@import FirebaseMLModelDownloader;
-
Se você ainda não ativou APIs baseadas em nuvem para seu projeto, siga estas etapas:
- Abra a página de APIs do Firebase ML do console do Firebase.
-
Se você ainda não fez o upgrade do seu projeto para o plano de preços Blaze, clique em Fazer upgrade. Você só vai receber uma mensagem para fazer upgrade se o projeto não estiver no plano Blaze.
Apenas projetos no nível Blaze podem usar APIs baseadas na nuvem.
- Caso as APIs baseadas na nuvem ainda não estejam ativadas, clique em Ativar APIs baseadas na nuvem.
Use o Swift Package Manager para instalar e gerenciar as dependências do Firebase.
https://github.com/firebase/firebase-ios-sdk.git
Em seguida, faça algumas configurações no app:
Agora você já pode reconhecer texto em imagens.
Diretrizes de imagens de entrada
-
Para que o Firebase ML reconheça o texto com precisão, as imagens de entrada precisam conter texto representado por dados de pixel suficientes. O ideal para textos em alfabeto romano é que cada caractere tenha uma resolução de pelo menos 16 x 16 pixels. Para textos em chinês, japonês e coreano, cada caractere deve ter uma resolução de 24 x 24 pixels. Para todos os idiomas, geralmente não há melhorias de precisão em usar caracteres maiores que 24 x 24 pixels.
Por exemplo, uma imagem de 640 x 480 pixels pode funcionar para digitalizar um cartão de visita que ocupe toda a largura da imagem. Para digitalizar um documento impresso em papel de tamanho carta, talvez seja necessária uma imagem de 720 x 1280 pixels.
-
O foco inadequado da imagem pode prejudicar a precisão do reconhecimento de texto. Se você não está conseguindo resultados aceitáveis, peça para o usuário recapturar a imagem.
Reconhecer texto em imagens
Para reconhecer texto em imagens, execute o reconhecedor de texto conforme descrito abaixo.
1. Executar o reconhecedor de texto
Transmita a imagem como umUIImage
ou um CMSampleBufferRef
para o método process(_:completion:)
do VisionTextRecognizer
:
- Para receber uma instância de
VisionTextRecognizer
, chamecloudTextRecognizer
.Swift
let vision = Vision.vision() let textRecognizer = vision.cloudTextRecognizer() // Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages let options = VisionCloudTextRecognizerOptions() options.languageHints = ["en", "hi"] let textRecognizer = vision.cloudTextRecognizer(options: options)
Objective-C
FIRVision *vision = [FIRVision vision]; FIRVisionTextRecognizer *textRecognizer = [vision cloudTextRecognizer]; // Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages FIRVisionCloudTextRecognizerOptions *options = [[FIRVisionCloudTextRecognizerOptions alloc] init]; options.languageHints = @[@"en", @"hi"]; FIRVisionTextRecognizer *textRecognizer = [vision cloudTextRecognizerWithOptions:options];
-
Para chamar o Cloud Vision, a imagem precisa ser formatada como uma string codificada em base64. Para processar um
UIImage
:Swift
guard let imageData = uiImage.jpegData(compressionQuality: 1.0) else { return } let base64encodedImage = imageData.base64EncodedString()
Objective-C
NSData *imageData = UIImageJPEGRepresentation(uiImage, 1.0f); NSString *base64encodedImage = [imageData base64EncodedStringWithOptions:NSDataBase64Encoding76CharacterLineLength];
-
Em seguida, transmita a imagem para o método
process(_:completion:)
:Swift
textRecognizer.process(visionImage) { result, error in guard error == nil, let result = result else { // ... return } // Recognized text }
Objective-C
[textRecognizer processImage:image completion:^(FIRVisionText *_Nullable result, NSError *_Nullable error) { if (error != nil || result == nil) { // ... return; } // Recognized text }];
2. Extrair texto de blocos de texto reconhecido
Se a operação de reconhecimento de texto for bem-sucedida, ela retornará um objetoVisionText
. Um objeto VisionText
contém o texto completo reconhecido na imagem e zero ou mais objetos VisionTextBlock
.
Cada VisionTextBlock
representa um bloco de texto retangular, que contém zero ou mais objetos VisionTextLine
. Cada objeto VisionTextLine
contém zero ou mais objetos VisionTextElement
, que representam palavras e entidades semelhantes (datas, números e assim por diante).
Para cada objeto VisionTextBlock
, VisionTextLine
e VisionTextElement
, é possível receber o texto reconhecido na região e as coordenadas delimitadoras da região.
Por exemplo:
Swift
let resultText = result.text for block in result.blocks { let blockText = block.text let blockConfidence = block.confidence let blockLanguages = block.recognizedLanguages let blockCornerPoints = block.cornerPoints let blockFrame = block.frame for line in block.lines { let lineText = line.text let lineConfidence = line.confidence let lineLanguages = line.recognizedLanguages let lineCornerPoints = line.cornerPoints let lineFrame = line.frame for element in line.elements { let elementText = element.text let elementConfidence = element.confidence let elementLanguages = element.recognizedLanguages let elementCornerPoints = element.cornerPoints let elementFrame = element.frame } } }
Objective-C
NSString *resultText = result.text; for (FIRVisionTextBlock *block in result.blocks) { NSString *blockText = block.text; NSNumber *blockConfidence = block.confidence; NSArray<FIRVisionTextRecognizedLanguage *> *blockLanguages = block.recognizedLanguages; NSArray<NSValue *> *blockCornerPoints = block.cornerPoints; CGRect blockFrame = block.frame; for (FIRVisionTextLine *line in block.lines) { NSString *lineText = line.text; NSNumber *lineConfidence = line.confidence; NSArray<FIRVisionTextRecognizedLanguage *> *lineLanguages = line.recognizedLanguages; NSArray<NSValue *> *lineCornerPoints = line.cornerPoints; CGRect lineFrame = line.frame; for (FIRVisionTextElement *element in line.elements) { NSString *elementText = element.text; NSNumber *elementConfidence = element.confidence; NSArray<FIRVisionTextRecognizedLanguage *> *elementLanguages = element.recognizedLanguages; NSArray<NSValue *> *elementCornerPoints = element.cornerPoints; CGRect elementFrame = element.frame; } } }
Próximas etapas
- Antes de implantar em produção um aplicativo que usa uma API do Cloud, é preciso seguir mais algumas etapas para evitar ou atenuar o efeito do acesso não autorizado à API.
Reconhecer texto em imagens de documentos
Para reconhecer o texto de um documento, configure e execute o reconhecedor, conforme descrito abaixo.
A API de reconhecimento de texto em documentos descrita abaixo tem uma interface desenvolvida para trabalhar com imagens de documentos. No entanto, se você preferir a interface fornecida pela API de texto em imagem, poderá usá-la para digitalizar documentos. Para fazer isso, basta configurar o reconhecedor de texto em nuvem para usar o modelo de texto denso.
Para usar a API de reconhecimento de texto em documentos, siga estas etapas:
1. Executar o reconhecedor de texto
Transmita a imagem como umUIImage
ou um CMSampleBufferRef
para o método process(_:completion:)
do VisionDocumentTextRecognizer
:
- Para receber uma instância de
VisionDocumentTextRecognizer
, chamecloudDocumentTextRecognizer
.Swift
let vision = Vision.vision() let textRecognizer = vision.cloudDocumentTextRecognizer() // Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages let options = VisionCloudDocumentTextRecognizerOptions() options.languageHints = ["en", "hi"] let textRecognizer = vision.cloudDocumentTextRecognizer(options: options)
Objective-C
FIRVision *vision = [FIRVision vision]; FIRVisionDocumentTextRecognizer *textRecognizer = [vision cloudDocumentTextRecognizer]; // Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages FIRVisionCloudDocumentTextRecognizerOptions *options = [[FIRVisionCloudDocumentTextRecognizerOptions alloc] init]; options.languageHints = @[@"en", @"hi"]; FIRVisionDocumentTextRecognizer *textRecognizer = [vision cloudDocumentTextRecognizerWithOptions:options];
-
Para chamar o Cloud Vision, a imagem precisa ser formatada como uma string codificada em base64. Para processar um
UIImage
:Swift
guard let imageData = uiImage.jpegData(compressionQuality: 1.0) else { return } let base64encodedImage = imageData.base64EncodedString()
Objective-C
NSData *imageData = UIImageJPEGRepresentation(uiImage, 1.0f); NSString *base64encodedImage = [imageData base64EncodedStringWithOptions:NSDataBase64Encoding76CharacterLineLength];
-
Em seguida, transmita a imagem para o método
process(_:completion:)
:Swift
textRecognizer.process(visionImage) { result, error in guard error == nil, let result = result else { // ... return } // Recognized text }
Objective-C
[textRecognizer processImage:image completion:^(FIRVisionDocumentText *_Nullable result, NSError *_Nullable error) { if (error != nil || result == nil) { // ... return; } // Recognized text }];
2. Extrair texto de blocos de texto reconhecido
Se a operação de reconhecimento de texto for bem-sucedida, ela retornará um objetoVisionDocumentText
. Um objeto VisionDocumentText
contém o texto completo reconhecido na imagem e uma hierarquia de objetos que refletem a estrutura do documento reconhecido:
Para cada objeto VisionDocumentTextBlock
, VisionDocumentTextParagraph
, VisionDocumentTextWord
e VisionDocumentTextSymbol
, é possível obter o texto reconhecido na região e as coordenadas delimitadoras da região.
Por exemplo:
Swift
let resultText = result.text for block in result.blocks { let blockText = block.text let blockConfidence = block.confidence let blockRecognizedLanguages = block.recognizedLanguages let blockBreak = block.recognizedBreak let blockCornerPoints = block.cornerPoints let blockFrame = block.frame for paragraph in block.paragraphs { let paragraphText = paragraph.text let paragraphConfidence = paragraph.confidence let paragraphRecognizedLanguages = paragraph.recognizedLanguages let paragraphBreak = paragraph.recognizedBreak let paragraphCornerPoints = paragraph.cornerPoints let paragraphFrame = paragraph.frame for word in paragraph.words { let wordText = word.text let wordConfidence = word.confidence let wordRecognizedLanguages = word.recognizedLanguages let wordBreak = word.recognizedBreak let wordCornerPoints = word.cornerPoints let wordFrame = word.frame for symbol in word.symbols { let symbolText = symbol.text let symbolConfidence = symbol.confidence let symbolRecognizedLanguages = symbol.recognizedLanguages let symbolBreak = symbol.recognizedBreak let symbolCornerPoints = symbol.cornerPoints let symbolFrame = symbol.frame } } } }
Objective-C
NSString *resultText = result.text; for (FIRVisionDocumentTextBlock *block in result.blocks) { NSString *blockText = block.text; NSNumber *blockConfidence = block.confidence; NSArray<FIRVisionTextRecognizedLanguage *> *blockRecognizedLanguages = block.recognizedLanguages; FIRVisionTextRecognizedBreak *blockBreak = block.recognizedBreak; CGRect blockFrame = block.frame; for (FIRVisionDocumentTextParagraph *paragraph in block.paragraphs) { NSString *paragraphText = paragraph.text; NSNumber *paragraphConfidence = paragraph.confidence; NSArray<FIRVisionTextRecognizedLanguage *> *paragraphRecognizedLanguages = paragraph.recognizedLanguages; FIRVisionTextRecognizedBreak *paragraphBreak = paragraph.recognizedBreak; CGRect paragraphFrame = paragraph.frame; for (FIRVisionDocumentTextWord *word in paragraph.words) { NSString *wordText = word.text; NSNumber *wordConfidence = word.confidence; NSArray<FIRVisionTextRecognizedLanguage *> *wordRecognizedLanguages = word.recognizedLanguages; FIRVisionTextRecognizedBreak *wordBreak = word.recognizedBreak; CGRect wordFrame = word.frame; for (FIRVisionDocumentTextSymbol *symbol in word.symbols) { NSString *symbolText = symbol.text; NSNumber *symbolConfidence = symbol.confidence; NSArray<FIRVisionTextRecognizedLanguage *> *symbolRecognizedLanguages = symbol.recognizedLanguages; FIRVisionTextRecognizedBreak *symbolBreak = symbol.recognizedBreak; CGRect symbolFrame = symbol.frame; } } } }
Próximas etapas
- Antes de implantar em produção um app que usa uma API do Cloud, é preciso seguir mais algumas etapas para evitar ou atenuar o efeito do acesso não autorizado à API.