Esegui la migrazione dall'API del modello personalizzato precedente

La versione 0.20.0 della libreria Firebase/MLModelInterpreter introduce un nuovo metodo getLatestModelFilePath(), che recupera la posizione sul dispositivo dei modelli personalizzati. Puoi utilizzare questo metodo per creare direttamente un oggetto Interpreter di TensorFlow Lite, che puoi utilizzare al posto del wrapper ModelInterpreter di Firebase.

In futuro, questo sarà l'approccio preferito. Poiché la versione dell'interprete di TensorFlow Lite non è più accoppiata alla versione della libreria Firebase, hai più flessibilità per eseguire l'upgrade alle nuove versioni di TensorFlow Lite quando vuoi o utilizzare più facilmente le build di TensorFlow Lite personalizzate.

Questa pagina mostra come eseguire la migrazione dall'utilizzo di ModelInterpreter a Interpreter di TensorFlow Lite.

1. Aggiorna le dipendenze del progetto

Aggiorna il file Podfile del progetto in modo da includere la versione 0.20.0 della libreria Firebase/MLModelInterpreter (o successiva) e la libreria TensorFlow Lite:

Prima

Swift

pod 'Firebase/MLModelInterpreter', '0.19.0'

Objective-C

pod 'Firebase/MLModelInterpreter', '0.19.0'

Dopo

Swift

pod 'Firebase/MLModelInterpreter', '~> 0.20.0'
pod 'TensorFlowLiteSwift'

Objective-C

pod 'Firebase/MLModelInterpreter', '~> 0.20.0'
pod 'TensorFlowLiteObjC'

2. Creare un interprete TensorFlow Lite anziché un Firebase ModelInterpreter

Invece di creare un ModelInterpreter Firebase, recupera la posizione del modello sul dispositivo con getLatestModelFilePath() e utilizzala per creare un Interpreter TensorFlow Lite.

Prima

Swift

let remoteModel = CustomRemoteModel(
    name: "your_remote_model"  // The name you assigned in the Firebase console.
)
interpreter = ModelInterpreter.modelInterpreter(remoteModel: remoteModel)

Objective-C

// Initialize using the name you assigned in the Firebase console.
FIRCustomRemoteModel *remoteModel =
        [[FIRCustomRemoteModel alloc] initWithName:@"your_remote_model"];
interpreter = [FIRModelInterpreter modelInterpreterForRemoteModel:remoteModel];

Dopo

Swift

let remoteModel = CustomRemoteModel(
    name: "your_remote_model"  // The name you assigned in the Firebase console.
)
ModelManager.modelManager().getLatestModelFilePath(remoteModel) { (remoteModelPath, error) in
    guard error == nil, let remoteModelPath = remoteModelPath else { return }
    do {
        interpreter = try Interpreter(modelPath: remoteModelPath)
    } catch {
        // Error?
    }
}

Objective-C

FIRCustomRemoteModel *remoteModel =
        [[FIRCustomRemoteModel alloc] initWithName:@"your_remote_model"];
[[FIRModelManager modelManager] getLatestModelFilePath:remoteModel
                                            completion:^(NSString * _Nullable filePath,
                                                         NSError * _Nullable error) {
    if (error != nil || filePath == nil) { return; }

    NSError *tfError = nil;
    interpreter = [[TFLInterpreter alloc] initWithModelPath:filePath error:&tfError];
}];

3. Aggiorna il codice di preparazione di input e output

Con ModelInterpreter, puoi specificare le forme di input e output del modello passando un oggetto ModelInterpreter all'interprete quando lo esegui.ModelInputOutputOptions

Per l'interprete TensorFlow Lite, chiama allocateTensors() per allocare spazio per l'input e l'output del modello, quindi copia i dati di input nei tensori di input.

Ad esempio, se il tuo modello ha una forma di input di valori float [1 224 224 3] e una forma di output di valori float [1 1000], apporta le seguenti modifiche:

Prima

Swift

let ioOptions = ModelInputOutputOptions()
do {
    try ioOptions.setInputFormat(
        index: 0,
        type: .float32,
        dimensions: [1, 224, 224, 3]
    )
    try ioOptions.setOutputFormat(
        index: 0,
        type: .float32,
        dimensions: [1, 1000]
    )
} catch let error as NSError {
    print("Failed to set input or output format with error: \(error.localizedDescription)")
}

let inputs = ModelInputs()
do {
    let inputData = Data()
    // Then populate with input data.

    try inputs.addInput(inputData)
} catch let error {
    print("Failed to add input: \(error)")
}

interpreter.run(inputs: inputs, options: ioOptions) { outputs, error in
    guard error == nil, let outputs = outputs else { return }
    // Process outputs
    // ...
}

Objective-C

FIRModelInputOutputOptions *ioOptions = [[FIRModelInputOutputOptions alloc] init];
NSError *error;
[ioOptions setInputFormatForIndex:0
                             type:FIRModelElementTypeFloat32
                       dimensions:@[@1, @224, @224, @3]
                            error:&error];
if (error != nil) { return; }
[ioOptions setOutputFormatForIndex:0
                              type:FIRModelElementTypeFloat32
                        dimensions:@[@1, @1000]
                             error:&error];
if (error != nil) { return; }

FIRModelInputs *inputs = [[FIRModelInputs alloc] init];
NSMutableData *inputData = [[NSMutableData alloc] initWithCapacity:0];
// Then populate with input data.

[inputs addInput:inputData error:&error];
if (error != nil) { return; }

[interpreter runWithInputs:inputs
                   options:ioOptions
                completion:^(FIRModelOutputs * _Nullable outputs,
                             NSError * _Nullable error) {
  if (error != nil || outputs == nil) {
    return;
  }
  // Process outputs
  // ...
}];

Dopo

Swift

do {
    try interpreter.allocateTensors()

    let inputData = Data()
    // Then populate with input data.

    try interpreter.copy(inputData, toInputAt: 0)

    try interpreter.invoke()
} catch let err {
    print(err.localizedDescription)
}

Objective-C

NSError *error = nil;

[interpreter allocateTensorsWithError:&error];
if (error != nil) { return; }

TFLTensor *input = [interpreter inputTensorAtIndex:0 error:&error];
if (error != nil) { return; }

NSMutableData *inputData = [[NSMutableData alloc] initWithCapacity:0];
// Then populate with input data.

[input copyData:inputData error:&error];
if (error != nil) { return; }

[interpreter invokeWithError:&error];
if (error != nil) { return; }

4. Aggiorna il codice di gestione dell'output

Infine, anziché ottenere l'output del modello con il metodo ModelOutputsoutput() dell'oggetto ModelOutputs, recupera il tensore di output dall'interprete e converti i suoi dati nella struttura più adatta al tuo caso d'uso.

Ad esempio, se stai eseguendo la classificazione, potresti apportare modifiche come quelle riportate di seguito:

Prima

Swift

let output = try? outputs.output(index: 0) as? [[NSNumber]]
let probabilities = output?[0]

guard let labelPath = Bundle.main.path(
    forResource: "custom_labels",
    ofType: "txt"
) else { return }
let fileContents = try? String(contentsOfFile: labelPath)
guard let labels = fileContents?.components(separatedBy: "\n") else { return }

for i in 0 ..< labels.count {
    if let probability = probabilities?[i] {
        print("\(labels[i]): \(probability)")
    }
}

Objective-C

// Get first and only output of inference with a batch size of 1
NSError *error;
NSArray *probabilites = [outputs outputAtIndex:0 error:&error][0];
if (error != nil) { return; }

NSString *labelPath = [NSBundle.mainBundle pathForResource:@"retrained_labels"
                                                    ofType:@"txt"];
NSString *fileContents = [NSString stringWithContentsOfFile:labelPath
                                                   encoding:NSUTF8StringEncoding
                                                      error:&error];
if (error != nil || fileContents == NULL) { return; }
NSArray<NSString *> *labels = [fileContents componentsSeparatedByString:@"\n"];
for (int i = 0; i < labels.count; i++) {
    NSString *label = labels[i];
    NSNumber *probability = probabilites[i];
    NSLog(@"%@: %f", label, probability.floatValue);
}

Dopo

Swift

do {
    // After calling interpreter.invoke():
    let output = try interpreter.output(at: 0)
    let probabilities =
            UnsafeMutableBufferPointer<Float32>.allocate(capacity: 1000)
    output.data.copyBytes(to: probabilities)

    guard let labelPath = Bundle.main.path(
        forResource: "custom_labels",
        ofType: "txt"
    ) else { return }
    let fileContents = try? String(contentsOfFile: labelPath)
    guard let labels = fileContents?.components(separatedBy: "\n") else { return }

    for i in labels.indices {
        print("\(labels[i]): \(probabilities[i])")
    }
} catch let err {
    print(err.localizedDescription)
}

Objective-C

NSError *error = nil;

TFLTensor *output = [interpreter outputTensorAtIndex:0 error:&error];
if (error != nil) { return; }

NSData *outputData = [output dataWithError:&error];
if (error != nil) { return; }

Float32 probabilities[outputData.length / 4];
[outputData getBytes:&probabilities length:outputData.length];

NSString *labelPath = [NSBundle.mainBundle pathForResource:@"custom_labels"
                                                    ofType:@"txt"];
NSString *fileContents = [NSString stringWithContentsOfFile:labelPath
                                                   encoding:NSUTF8StringEncoding
                                                      error:&error];
if (error != nil || fileContents == nil) { return; }

NSArray<NSString *> *labels = [fileContents componentsSeparatedByString:@"\n"];
for (int i = 0; i < labels.count; i++) {
    NSLog(@"%@: %f", labels[i], probabilities[i]);
}