После обучения собственной модели с помощью AutoML Vision Edge вы можете использовать ее в своем приложении для маркировки изображений.
Существует два способа интеграции моделей, обученных с помощью AutoML Vision Edge. Вы можете связать модель, скопировав файлы модели в свой проект Xcode, или вы можете динамически загрузить ее из Firebase.
Варианты комплектации модели | |
---|---|
Включено в ваше приложение |
|
Размещено на Firebase |
|
Прежде чем начать
Включите библиотеки ML Kit в свой подфайл:
Для объединения модели с вашим приложением:
pod 'GoogleMLKit/ImageLabelingCustom'
Для динамической загрузки модели из Firebase добавьте зависимость
LinkFirebase
:pod 'GoogleMLKit/ImageLabelingCustom' pod 'GoogleMLKit/LinkFirebase'
После установки или обновления модулей вашего проекта откройте проект Xcode, используя его
.xcworkspace
. ML Kit поддерживается в Xcode версии 12.2 или выше.Если вы хотите загрузить модель , обязательно добавьте Firebase в свой проект Android , если вы еще этого не сделали. Это не требуется при объединении модели.
1. Загрузите модель
Настройте источник локальной модели
Чтобы связать модель с вашим приложением:
Извлеките модель и ее метаданные из zip-архива, который вы скачали с консоли Firebase в папку:
your_model_directory |____dict.txt |____manifest.json |____model.tflite
Все три файла должны находиться в одной папке. Мы рекомендуем использовать файлы в том виде, в котором вы их скачали, без изменений (включая имена файлов).
Скопируйте папку в свой проект Xcode, не забывая при этом выбирать «Создать ссылки на папки» . Файл модели и метаданные будут включены в пакет приложения и доступны в ML Kit.
Создайте объект
LocalModel
, указав путь к файлу манифеста модели:Быстрый
guard let manifestPath = Bundle.main.path( forResource: "manifest", ofType: "json", inDirectory: "your_model_directory" ) else { return true } let localModel = LocalModel(manifestPath: manifestPath)
Цель-C
NSString *manifestPath = [NSBundle.mainBundle pathForResource:@"manifest" ofType:@"json" inDirectory:@"your_model_directory"]; MLKLocalModel *localModel = [[MLKLocalModel alloc] initWithManifestPath:manifestPath];
Настройте источник модели, размещенный в Firebase
Чтобы использовать удаленно размещенную модель, создайте объект CustomRemoteModel
, указав имя, которое вы присвоили модели при ее публикации:
Быстрый
// Initialize the model source with the name you assigned in
// the Firebase console.
let remoteModelSource = FirebaseModelSource(name: "your_remote_model")
let remoteModel = CustomRemoteModel(remoteModelSource: remoteModelSource)
Цель-C
// Initialize the model source with the name you assigned in
// the Firebase console.
MLKFirebaseModelSource *firebaseModelSource =
[[MLKFirebaseModelSource alloc] initWithName:@"your_remote_model"];
MLKCustomRemoteModel *remoteModel =
[[MLKCustomRemoteModel alloc] initWithRemoteModelSource:firebaseModelSource];
Затем запустите задачу загрузки модели, указав условия, при которых вы хотите разрешить загрузку. Если модели нет на устройстве или доступна более новая версия модели, задача асинхронно загрузит модель из Firebase:
Быстрый
let downloadConditions = ModelDownloadConditions(
allowsCellularAccess: true,
allowsBackgroundDownloading: true
)
let downloadProgress = ModelManager.modelManager().download(
remoteModel,
conditions: downloadConditions
)
Цель-C
MLKModelDownloadConditions *downloadConditions =
[[MLKModelDownloadConditions alloc] initWithAllowsCellularAccess:YES
allowsBackgroundDownloading:YES];
NSProgress *downloadProgress =
[[MLKModelManager modelManager] downloadRemoteModel:remoteModel
conditions:downloadConditions];
Многие приложения запускают задачу загрузки в своем коде инициализации, но вы можете сделать это в любой момент, прежде чем вам понадобится использовать модель.
Создайте маркировщик изображений на основе своей модели.
После настройки источников модели создайте объект ImageLabeler
на основе одного из них.
Если у вас есть только локально связанная модель, просто создайте метку из вашего объекта LocalModel
и настройте требуемый порог оценки достоверности (см. Оценка вашей модели ):
Быстрый
let options = CustomImageLabelerOptions(localModel: localModel)
options.confidenceThreshold = NSNumber(value: 0.0) // Evaluate your model in the Cloud console
// to determine an appropriate value.
let imageLabeler = ImageLabeler.imageLabeler(options)
Цель-C
CustomImageLabelerOptions *options =
[[CustomImageLabelerOptions alloc] initWithLocalModel:localModel];
options.confidenceThreshold = @(0.0f); // Evaluate your model in the Cloud console
// to determine an appropriate value.
MLKImageLabeler *imageLabeler =
[MLKImageLabeler imageLabelerWithOptions:options];
Если у вас есть удаленно размещенная модель, вам придется убедиться, что она загружена, прежде чем запускать ее. Вы можете проверить состояние задачи загрузки модели с помощью метода isModelDownloaded(remoteModel:)
менеджера моделей.
Хотя вам нужно подтвердить это только перед запуском средства разметки, если у вас есть как удаленно размещенная модель, так и локально связанная модель, возможно, имеет смысл выполнить эту проверку при создании экземпляра ImageLabeler
: создайте средство разметки из удаленной модели, если оно скачано, а из локальной модели иначе.
Быстрый
var options: CustomImageLabelerOptions
if (ModelManager.modelManager().isModelDownloaded(remoteModel)) {
options = CustomImageLabelerOptions(remoteModel: remoteModel)
} else {
options = CustomImageLabelerOptions(localModel: localModel)
}
options.confidenceThreshold = NSNumber(value: 0.0) // Evaluate your model in the Firebase console
// to determine an appropriate value.
let imageLabeler = ImageLabeler.imageLabeler(options: options)
Цель-C
MLKCustomImageLabelerOptions *options;
if ([[MLKModelManager modelManager] isModelDownloaded:remoteModel]) {
options = [[MLKCustomImageLabelerOptions alloc] initWithRemoteModel:remoteModel];
} else {
options = [[MLKCustomImageLabelerOptions alloc] initWithLocalModel:localModel];
}
options.confidenceThreshold = @(0.0f); // Evaluate your model in the Firebase console
// to determine an appropriate value.
MLKImageLabeler *imageLabeler =
[MLKImageLabeler imageLabelerWithOptions:options];
Если у вас есть только удаленно размещенная модель, вам следует отключить функции, связанные с моделью (например, сделать их серыми или скрыть часть пользовательского интерфейса), пока вы не подтвердите, что модель загружена.
Вы можете получить статус загрузки модели, присоединив наблюдателей к Центру уведомлений по умолчанию. Обязательно используйте слабую ссылку на self
в блоке наблюдателя, поскольку загрузка может занять некоторое время, а исходный объект может быть освобожден к моменту завершения загрузки. Например:
Быстрый
NotificationCenter.default.addObserver(
forName: .mlkitMLModelDownloadDidSucceed,
object: nil,
queue: nil
) { [weak self] notification in
guard let strongSelf = self,
let userInfo = notification.userInfo,
let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue]
as? RemoteModel,
model.name == "your_remote_model"
else { return }
// The model was downloaded and is available on the device
}
NotificationCenter.default.addObserver(
forName: .mlkitMLModelDownloadDidFail,
object: nil,
queue: nil
) { [weak self] notification in
guard let strongSelf = self,
let userInfo = notification.userInfo,
let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue]
as? RemoteModel
else { return }
let error = userInfo[ModelDownloadUserInfoKey.error.rawValue]
// ...
}
Цель-C
__weak typeof(self) weakSelf = self;
[NSNotificationCenter.defaultCenter
addObserverForName:MLKModelDownloadDidSucceedNotification
object:nil
queue:nil
usingBlock:^(NSNotification *_Nonnull note) {
if (weakSelf == nil | note.userInfo == nil) {
return;
}
__strong typeof(self) strongSelf = weakSelf;
MLKRemoteModel *model = note.userInfo[MLKModelDownloadUserInfoKeyRemoteModel];
if ([model.name isEqualToString:@"your_remote_model"]) {
// The model was downloaded and is available on the device
}
}];
[NSNotificationCenter.defaultCenter
addObserverForName:MLKModelDownloadDidFailNotification
object:nil
queue:nil
usingBlock:^(NSNotification *_Nonnull note) {
if (weakSelf == nil | note.userInfo == nil) {
return;
}
__strong typeof(self) strongSelf = weakSelf;
NSError *error = note.userInfo[MLKModelDownloadUserInfoKeyError];
}];
2. Подготовьте входное изображение
Создайте объект VisionImage
используя UIImage
или CMSampleBufferRef
.
Если вы используете UIImage
, выполните следующие действия:
- Создайте объект
VisionImage
с помощьюUIImage
. Обязательно укажите правильную.orientation
.Быстрый
let image = VisionImage(image: uiImage) visionImage.orientation = image.imageOrientation
Цель-C
MLKVisionImage *visionImage = [[MLKVisionImage alloc] initWithImage:image]; visionImage.orientation = image.imageOrientation;
Если вы используете CMSampleBufferRef
, выполните следующие действия:
Укажите ориентацию данных изображения, содержащихся в буфере
CMSampleBufferRef
.Чтобы получить ориентацию изображения:
Быстрый
func imageOrientation( deviceOrientation: UIDeviceOrientation, cameraPosition: AVCaptureDevice.Position ) -> UIImage.Orientation { switch deviceOrientation { case .portrait: return cameraPosition == .front ? .leftMirrored : .right case .landscapeLeft: return cameraPosition == .front ? .downMirrored : .up case .portraitUpsideDown: return cameraPosition == .front ? .rightMirrored : .left case .landscapeRight: return cameraPosition == .front ? .upMirrored : .down case .faceDown, .faceUp, .unknown: return .up } }
Цель-C
- (UIImageOrientation) imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation cameraPosition:(AVCaptureDevicePosition)cameraPosition { switch (deviceOrientation) { case UIDeviceOrientationPortrait: return position == AVCaptureDevicePositionFront ? UIImageOrientationLeftMirrored : UIImageOrientationRight; case UIDeviceOrientationLandscapeLeft: return position == AVCaptureDevicePositionFront ? UIImageOrientationDownMirrored : UIImageOrientationUp; case UIDeviceOrientationPortraitUpsideDown: return position == AVCaptureDevicePositionFront ? UIImageOrientationRightMirrored : UIImageOrientationLeft; case UIDeviceOrientationLandscapeRight: return position == AVCaptureDevicePositionFront ? UIImageOrientationUpMirrored : UIImageOrientationDown; case UIDeviceOrientationUnknown: case UIDeviceOrientationFaceUp: case UIDeviceOrientationFaceDown: return UIImageOrientationUp; } }
- Создайте объект
VisionImage
, используя объектCMSampleBufferRef
и ориентацию:Быстрый
let image = VisionImage(buffer: sampleBuffer) image.orientation = imageOrientation( deviceOrientation: UIDevice.current.orientation, cameraPosition: cameraPosition)
Цель-C
MLKVisionImage *image = [[MLKVisionImage alloc] initWithBuffer:sampleBuffer]; image.orientation = [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation cameraPosition:cameraPosition];
3. Запустите программу разметки изображений.
Асинхронно:
Быстрый
imageLabeler.process(image) { labels, error in
guard error == nil, let labels = labels, !labels.isEmpty else {
// Handle the error.
return
}
// Show results.
}
Цель-C
[imageLabeler
processImage:image
completion:^(NSArray<MLKImageLabel *> *_Nullable labels,
NSError *_Nullable error) {
if (label.count == 0) {
// Handle the error.
return;
}
// Show results.
}];
Синхронно:
Быстрый
var labels: [ImageLabel]
do {
labels = try imageLabeler.results(in: image)
} catch let error {
// Handle the error.
return
}
// Show results.
Цель-C
NSError *error;
NSArray<MLKImageLabel *> *labels =
[imageLabeler resultsInImage:image error:&error];
// Show results or handle the error.
4. Получить информацию о помеченных объектах
Если операция маркировки изображения прошла успешно, она возвращает массив ImageLabel
. Каждая ImageLabel
представляет собой что-то, что было помечено на изображении. Вы можете получить текстовое описание каждой метки (если оно доступно в метаданных файла модели TensorFlow Lite), оценку достоверности и индекс. Например:
Быстрый
for label in labels {
let labelText = label.text
let confidence = label.confidence
let index = label.index
}
Цель-C
for (MLKImageLabel *label in labels) {
NSString *labelText = label.text;
float confidence = label.confidence;
NSInteger index = label.index;
}
Советы по повышению производительности в реальном времени
Если вы хотите маркировать изображения в приложении реального времени, следуйте этим рекомендациям для достижения наилучшей частоты кадров:
- Дроссель вызывает детектор. Если новый видеокадр становится доступным во время работы детектора, удалите этот кадр.
- Если вы используете выходные данные детектора для наложения графики на входное изображение, сначала получите результат, затем визуализируйте изображение и наложите его за один шаг. При этом вы выполняете рендеринг на поверхность дисплея только один раз для каждого входного кадра. Пример см. в классах PreviewOverlayView и FIRDetectionOverlayView в примере приложения-демонстратора.