Bilder mit Firebase ML auf Apple-Plattformen mit Labels versehen

Mit Firebase ML können Sie Objekte in einem Bild labeln. Weitere Informationen finden Sie in der Übersicht für Informationen zu dieser API Funktionen.

Hinweis

    Wenn Sie Ihrer App noch nicht Firebase hinzugefügt haben, folgen Sie der im Startleitfaden.

    Verwenden Sie Swift Package Manager, um Firebase-Abhängigkeiten zu installieren und zu verwalten.

    1. Gehen Sie in Xcode bei geöffnetem App-Projekt zu File > Pakete hinzufügen.
    2. Fügen Sie bei entsprechender Aufforderung das Firebase Apple Platforms SDK-Repository hinzu:
    3.   https://github.com/firebase/firebase-ios-sdk.git
    4. Wählen Sie die Firebase ML-Bibliothek aus.
    5. Fügen Sie in den Build-Einstellungen des Ziels im Bereich Other Linker Flags das Flag -ObjC hinzu.
    6. Wenn Sie fertig, beginnt Xcode automatisch, Ihre Abhängigkeiten im Hintergrund aufzulösen und herunterzuladen.

    Führe als Nächstes einige In-App-Einrichtungen durch:

    1. Importieren Sie Firebase in Ihre App:

      Swift

      import FirebaseMLModelDownloader

      Objective-C

      @import FirebaseMLModelDownloader;
  1. Falls Sie cloudbasierte APIs für Ihr Projekt noch nicht aktiviert haben, tun Sie dies jetzt:

    1. Öffnen Sie das Firebase ML APIs-Seite der Firebase-Konsole.
    2. Wenn Sie für Ihr Projekt noch kein Upgrade auf das Blaze-Preismodell durchgeführt haben, klicken Sie auf Führen Sie ein Upgrade durch. Sie werden nur dann zum Upgrade aufgefordert, Projekt nicht im Tarif "Blaze" ist.)

      Nur Projekte auf Blaze-Ebene können cloudbasierte APIs verwenden.

    3. Wenn cloudbasierte APIs noch nicht aktiviert sind, klicken Sie auf Cloudbasierte APIs aktivieren.

Jetzt können Sie den Bildern Labels hinzufügen.

1. Eingabebild vorbereiten

Erstellen Sie ein VisionImage-Objekt mithilfe von UIImage oder einem CMSampleBufferRef

So verwendest du UIImage:

  1. Drehen Sie das Bild gegebenenfalls so, dass es imageOrientation Property ist .up.
  2. Erstellen Sie ein VisionImage-Objekt mithilfe der korrekt gedrehten UIImage. Geben Sie keine Rotationsmetadaten an. Dies ist die Standardeinstellung. Wert .topLeft muss verwendet werden.

    Swift

    let image = VisionImage(image: uiImage)

    Objective-C

    FIRVisionImage *image = [[FIRVisionImage alloc] initWithImage:uiImage];

So verwendest du CMSampleBufferRef:

  1. Erstellen Sie ein VisionImageMetadata-Objekt, das die Ausrichtung der Bilddaten im CMSampleBufferRef-Puffer angibt.

    So rufen Sie die Bildausrichtung ab:

    Swift

    func imageOrientation(
        deviceOrientation: UIDeviceOrientation,
        cameraPosition: AVCaptureDevice.Position
        ) -> VisionDetectorImageOrientation {
        switch deviceOrientation {
        case .portrait:
            return cameraPosition == .front ? .leftTop : .rightTop
        case .landscapeLeft:
            return cameraPosition == .front ? .bottomLeft : .topLeft
        case .portraitUpsideDown:
            return cameraPosition == .front ? .rightBottom : .leftBottom
        case .landscapeRight:
            return cameraPosition == .front ? .topRight : .bottomRight
        case .faceDown, .faceUp, .unknown:
            return .leftTop
        }
    }

    Objective-C

    - (FIRVisionDetectorImageOrientation)
        imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation
                               cameraPosition:(AVCaptureDevicePosition)cameraPosition {
      switch (deviceOrientation) {
        case UIDeviceOrientationPortrait:
          if (cameraPosition == AVCaptureDevicePositionFront) {
            return FIRVisionDetectorImageOrientationLeftTop;
          } else {
            return FIRVisionDetectorImageOrientationRightTop;
          }
        case UIDeviceOrientationLandscapeLeft:
          if (cameraPosition == AVCaptureDevicePositionFront) {
            return FIRVisionDetectorImageOrientationBottomLeft;
          } else {
            return FIRVisionDetectorImageOrientationTopLeft;
          }
        case UIDeviceOrientationPortraitUpsideDown:
          if (cameraPosition == AVCaptureDevicePositionFront) {
            return FIRVisionDetectorImageOrientationRightBottom;
          } else {
            return FIRVisionDetectorImageOrientationLeftBottom;
          }
        case UIDeviceOrientationLandscapeRight:
          if (cameraPosition == AVCaptureDevicePositionFront) {
            return FIRVisionDetectorImageOrientationTopRight;
          } else {
            return FIRVisionDetectorImageOrientationBottomRight;
          }
        default:
          return FIRVisionDetectorImageOrientationTopLeft;
      }
    }

    Erstellen Sie dann das Metadatenobjekt:

    Swift

    let cameraPosition = AVCaptureDevice.Position.back  // Set to the capture device you used.
    let metadata = VisionImageMetadata()
    metadata.orientation = imageOrientation(
        deviceOrientation: UIDevice.current.orientation,
        cameraPosition: cameraPosition
    )

    Objective-C

    FIRVisionImageMetadata *metadata = [[FIRVisionImageMetadata alloc] init];
    AVCaptureDevicePosition cameraPosition =
        AVCaptureDevicePositionBack;  // Set to the capture device you used.
    metadata.orientation =
        [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation
                                     cameraPosition:cameraPosition];
  2. Erstellen Sie ein VisionImage-Objekt mithilfe der CMSampleBufferRef-Objekt und die Rotationsmetadaten:

    Swift

    let image = VisionImage(buffer: sampleBuffer)
    image.metadata = metadata

    Objective-C

    FIRVisionImage *image = [[FIRVisionImage alloc] initWithBuffer:sampleBuffer];
    image.metadata = metadata;

2. Labelersteller für Images konfigurieren und ausführen

Wenn Sie Objekte in einem Bild mit Labels versehen möchten, übergeben Sie das VisionImage-Objekt an die processImage()-Methode des VisionImageLabeler-Objekts.

  1. Rufen Sie zuerst eine Instanz von VisionImageLabeler ab:

    Swift

    let labeler = Vision.vision().cloudImageLabeler()
    
    // Or, to set the minimum confidence required:
    // let options = VisionCloudImageLabelerOptions()
    // options.confidenceThreshold = 0.7
    // let labeler = Vision.vision().cloudImageLabeler(options: options)
    

    Objective-C

    FIRVisionImageLabeler *labeler = [[FIRVision vision] cloudImageLabeler];
    
    // Or, to set the minimum confidence required:
    // FIRVisionCloudImageLabelerOptions *options =
    //         [[FIRVisionCloudImageLabelerOptions alloc] init];
    // options.confidenceThreshold = 0.7;
    // FIRVisionImageLabeler *labeler =
    //         [[FIRVision vision] cloudImageLabelerWithOptions:options];
    
  2. Übergeben Sie dann das Bild an die Methode processImage():

    Swift

    labeler.process(image) { labels, error in
        guard error == nil, let labels = labels else { return }
    
        // Task succeeded.
        // ...
    }
    

    Objective-C

    [labeler processImage:image
               completion:^(NSArray<FIRVisionImageLabel *> *_Nullable labels,
                            NSError *_Nullable error) {
                   if (error != nil) { return; }
    
                   // Task succeeded.
                   // ...
               }];
    

3. Informationen zu gekennzeichneten Objekten abrufen

Wenn die Bildbeschriftung erfolgreich war, wird dem Abschluss-Handler ein Array von VisionImageLabel-Objekten übergeben. Von jedem Objekt erhalten Sie Informationen zu einem im Bild erkannten Merkmal.

Beispiel:

Swift

for label in labels {
    let labelText = label.text
    let entityId = label.entityID
    let confidence = label.confidence
}

Objective-C

for (FIRVisionImageLabel *label in labels) {
   NSString *labelText = label.text;
   NSString *entityId = label.entityID;
   NSNumber *confidence = label.confidence;
}

Nächste Schritte