Mit Firebase ML für Android Text in Bildern erkennen

Du kannst Firebase ML verwenden, um Text in Bildern zu erkennen. Firebase ML bietet sowohl eine allgemeine API, die sich zum Erkennen von Text in Bildern eignet, z. B. den Text eines Straßenschilds, als auch eine API, die für die Erkennung von Text in Dokumenten optimiert ist.

Hinweis

  1. Falls noch nicht geschehen, Fügen Sie Ihrem Android-Projekt Firebase hinzu.
  2. In der Gradle-Datei des Moduls (auf App-Ebene) (normalerweise <project>/<app-module>/build.gradle.kts oder <project>/<app-module>/build.gradle) Fügen Sie die Abhängigkeit für die Firebase ML Vision-Bibliothek für Android hinzu. Wir empfehlen, die Firebase Android BoM-Taste zu verwenden, um die Versionierung der Bibliothek zu steuern.
    dependencies {
        // Import the BoM for the Firebase platform
        implementation(platform("com.google.firebase:firebase-bom:33.4.0"))
    
        // Add the dependency for the Firebase ML Vision library
        // When using the BoM, you don't specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision'
    }
    

    Mit dem Firebase Android BoM Ihre App verwendet immer kompatible Versionen der Firebase Android Libraries.

    (Alternative) Firebase-Bibliotheksabhängigkeiten ohne BoM hinzufügen

    Wenn Sie die Firebase BoM nicht verwenden, müssen Sie jede Firebase-Bibliotheksversion in der entsprechenden Abhängigkeitszeile angeben.

    Wenn Sie in Ihrer App mehrere Firebase-Bibliotheken verwenden, empfehlen, Bibliotheksversionen mit der BoM zu verwalten. Dadurch wird sichergestellt, dass alle Versionen kompatibel.

    dependencies {
        // Add the dependency for the Firebase ML Vision library
        // When NOT using the BoM, you must specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision:24.1.0'
    }
    
    Sie suchen nach einem Kotlin-spezifischen Bibliotheksmodul? Ab Oktober 2023 (Firebase BoM 32.5.0) können sowohl Kotlin- als auch Java-Entwickler das Hauptbibliotheksmodul verwenden. Weitere Informationen finden Sie in den häufig gestellten Fragen zu dieser Initiative.
  3. Wenn Sie noch keine cloudbasierten APIs für Ihr Projekt aktiviert haben, tun Sie dies jetzt. jetzt:

    1. Öffnen Sie in der Firebase-Konsole die Seite Firebase MLAPIs.
    2. Wenn Sie für Ihr Projekt noch kein Upgrade auf das Blaze-Preismodell durchgeführt haben, klicken Sie auf Führen Sie ein Upgrade durch. Sie werden nur dann zum Upgrade aufgefordert, Projekt nicht im Tarif "Blaze" enthalten ist.)

      Cloud-basierte APIs können nur in Projekten auf Blaze-Ebene verwendet werden.

    3. Wenn cloudbasierte APIs noch nicht aktiviert sind, klicken Sie auf Cloudbasierte APIs aktivieren.

Jetzt können Sie mit der Texterkennung in Bildern beginnen.

Richtlinien für Eingabebilder

  • Damit Firebase ML Text richtig erkennt, müssen die eingegebenen Bilder Folgendes enthalten: Text, der durch ausreichende Pixeldaten dargestellt wird. Ideal für Latein Text eingeben, muss jedes Zeichen mindestens 16 x 16 Pixel groß sein. Für Chinesisch: Japanischer und koreanischer Text, jeweils sollte 24 x 24 Pixel groß sein. In der Regel gibt es für alle Sprachen Verbesserung der Genauigkeit bei Zeichen, die größer als 24 x 24 Pixel sind.

    Ein Bild im Format 640 x 480 eignet sich also gut zum Scannen einer Visitenkarte. das die volle Breite des Bilds ausfüllt. So scannen Sie ein aufgedrucktes Dokument: im Schriftformat erforderlich ist, ist möglicherweise ein Bild mit 720 x 1280 Pixeln erforderlich.

  • Ein unscharfer Bildfokus kann die Genauigkeit der Texterkennung beeinträchtigen. Wenn Sie keine zufriedenstellenden Ergebnisse erhalten, bitten Sie den Nutzer, das Bild noch einmal aufzunehmen.


Erkennt Text in Bildern

Wenn Sie Text in einem Bild erkennen möchten, führen Sie den Texterkennungsalgorithmus wie unten beschrieben aus.

1. Texterkennung ausführen

Wenn du Text in einem Bild erkennen möchtest, erstelle ein FirebaseVisionImage-Objekt aus einem Bitmap-, media.Image-, ByteBuffer-, Byte-Array oder einer Datei in auf dem Gerät. Übergeben Sie dann das FirebaseVisionImage-Objekt an die Die Methode processImage von FirebaseVisionTextRecognizer.

  1. Erstellen Sie aus Ihrem Bild ein FirebaseVisionImage-Objekt.

    • Um ein FirebaseVisionImage-Objekt aus einem media.Image-Objekt, z. B. beim Aufnehmen eines Bildes von einem des Geräts an und übergib das media.Image-Objekt und die Rotation auf FirebaseVisionImage.fromMediaImage().

      Wenn Sie den CameraX-Bibliothek, den OnImageCapturedListener und ImageAnalysis.Analyzer-Klassen berechnen den Rotationswert Sie müssen die Rotation also nur in eine der Firebase MLs ROTATION_-Konstanten vor dem Aufruf FirebaseVisionImage.fromMediaImage():

      Kotlin+KTX

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Vision API
                  // ...
              }
          }
      }
      

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Vision API
              // ...
          }
      }
      

      Wenn Sie keine Kamerabibliothek verwenden, die die Drehung des Bildes liefert, können Sie sie anhand der Drehung des Geräts und der Ausrichtung des Kamerasensors im Gerät berechnen:

      Kotlin+KTX

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
              .getCameraCharacteristics(cameraId)
              .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Übergeben Sie dann das media.Image-Objekt und den Rotationswert auf FirebaseVisionImage.fromMediaImage():

      Kotlin+KTX

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
    • Wenn Sie ein FirebaseVisionImage-Objekt aus einem Datei-URI erstellen möchten, übergeben Sie den App-Kontext und den Datei-URI an FirebaseVisionImage.fromFilePath(). Dies ist nützlich, wenn Sie Verwenden Sie den Intent ACTION_GET_CONTENT, um den Nutzer zur Auswahl aufzufordern ein Bild aus ihrer Galerie-App.

      Kotlin+KTX

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }
    • Um ein FirebaseVisionImage-Objekt aus einem ByteBuffer oder einem Byte-Array, berechnen Sie zuerst das Bild Rotation wie oben für die media.Image-Eingabe beschrieben.

      Erstellen Sie dann ein FirebaseVisionImageMetadata-Objekt. die die Höhe, Breite, Farbcodierung, und Rotation:

      Kotlin+KTX

      val metadata = FirebaseVisionImageMetadata.Builder()
          .setWidth(480) // 480x360 is typically sufficient for
          .setHeight(360) // image recognition
          .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
          .setRotation(rotation)
          .build()

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Verwende den Puffer oder das Array und das Metadatenobjekt, um ein FirebaseVisionImage-Objekt zu erstellen:

      Kotlin+KTX

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
    • So erstellen Sie ein FirebaseVisionImage-Objekt aus einem Bitmap-Objekt:

      Kotlin+KTX

      val image = FirebaseVisionImage.fromBitmap(bitmap)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
      Das durch das Objekt Bitmap dargestellte Bild muss aufrecht und ohne zusätzliche Drehung aufrecht.

  2. Rufen Sie eine Instanz von FirebaseVisionTextRecognizer ab.

    Kotlin+KTX

    val detector = FirebaseVision.getInstance().cloudTextRecognizer
    // Or, to change the default settings:
    // val detector = FirebaseVision.getInstance().getCloudTextRecognizer(options)
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    val options = FirebaseVisionCloudTextRecognizerOptions.Builder()
        .setLanguageHints(listOf("en", "hi"))
        .build()
    

    Java

    FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance()
            .getCloudTextRecognizer();
    // Or, to change the default settings:
    //   FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance()
    //          .getCloudTextRecognizer(options);
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FirebaseVisionCloudTextRecognizerOptions options = new FirebaseVisionCloudTextRecognizerOptions.Builder()
            .setLanguageHints(Arrays.asList("en", "hi"))
            .build();
    
  3. Übergeben Sie zuletzt das Bild an die Methode processImage:

    Kotlin+KTX

    val result = detector.processImage(image)
        .addOnSuccessListener { firebaseVisionText ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

    Java

    Task<FirebaseVisionText> result =
            detector.processImage(image)
                    .addOnSuccessListener(new OnSuccessListener<FirebaseVisionText>() {
                        @Override
                        public void onSuccess(FirebaseVisionText firebaseVisionText) {
                            // Task completed successfully
                            // ...
                        }
                    })
                    .addOnFailureListener(
                            new OnFailureListener() {
                                @Override
                                public void onFailure(@NonNull Exception e) {
                                    // Task failed with an exception
                                    // ...
                                }
                            });

2. Text aus Blöcken erkannten Texts extrahieren

Wenn die Texterkennung erfolgreich ist, wird ein Das Objekt FirebaseVisionText wird an den erfolgreichen Listener. Ein FirebaseVisionText-Objekt enthält den vollständigen im Bild erkannten Text und null oder mehr TextBlock-Objekte.

Jede TextBlock steht für einen rechteckigen Textblock, der null oder mehr Line-Objekte enthält. Jedes Line-Objekt enthält null oder mehr Element-Objekte, die Wörter und wortähnliche Elemente darstellen Entitäten (Datumsangaben, Zahlen usw.).

Für jedes TextBlock-, Line- und Element-Objekt können Sie den Text abrufen die in der Region erkannt werden, sowie die Begrenzungskoordinaten der Region.

Beispiel:

Kotlin+KTX

val resultText = result.text
for (block in result.textBlocks) {
    val blockText = block.text
    val blockConfidence = block.confidence
    val blockLanguages = block.recognizedLanguages
    val blockCornerPoints = block.cornerPoints
    val blockFrame = block.boundingBox
    for (line in block.lines) {
        val lineText = line.text
        val lineConfidence = line.confidence
        val lineLanguages = line.recognizedLanguages
        val lineCornerPoints = line.cornerPoints
        val lineFrame = line.boundingBox
        for (element in line.elements) {
            val elementText = element.text
            val elementConfidence = element.confidence
            val elementLanguages = element.recognizedLanguages
            val elementCornerPoints = element.cornerPoints
            val elementFrame = element.boundingBox
        }
    }
}

Java

String resultText = result.getText();
for (FirebaseVisionText.TextBlock block: result.getTextBlocks()) {
    String blockText = block.getText();
    Float blockConfidence = block.getConfidence();
    List<RecognizedLanguage> blockLanguages = block.getRecognizedLanguages();
    Point[] blockCornerPoints = block.getCornerPoints();
    Rect blockFrame = block.getBoundingBox();
    for (FirebaseVisionText.Line line: block.getLines()) {
        String lineText = line.getText();
        Float lineConfidence = line.getConfidence();
        List<RecognizedLanguage> lineLanguages = line.getRecognizedLanguages();
        Point[] lineCornerPoints = line.getCornerPoints();
        Rect lineFrame = line.getBoundingBox();
        for (FirebaseVisionText.Element element: line.getElements()) {
            String elementText = element.getText();
            Float elementConfidence = element.getConfidence();
            List<RecognizedLanguage> elementLanguages = element.getRecognizedLanguages();
            Point[] elementCornerPoints = element.getCornerPoints();
            Rect elementFrame = element.getBoundingBox();
        }
    }
}

Nächste Schritte


Text in Bildern von Dokumenten erkennen

Wenn Sie den Text eines Dokuments erkennen möchten, konfigurieren und führen Sie die Dokumenttexterkennung wie unten beschrieben aus.

Die unten beschriebene API zur Dokumenttexterkennung bietet eine Schnittstelle, die soll beim Arbeiten mit Bildern von Dokumenten einfacher sein. Sie können jedoch wenn Sie die von der FirebaseVisionTextRecognizer API bereitgestellte Schnittstelle bevorzugen, können Sie damit Dokumente scannen, indem Sie Cloud Text Erkennungsmethode, um das Modell mit dichtem Text zu verwenden.

So verwenden Sie die API zur Dokumenttexterkennung:

1. Texterkennung ausführen

Um Text in einem Bild zu erkennen, erstellen Sie ein FirebaseVisionImage-Objekt aus einer der folgenden Quellen: ein Bitmap-, media.Image-, ByteBuffer-, Byte-Array oder eine Datei auf dem Gerät. Übergeben Sie dann das FirebaseVisionImage-Objekt an die Die Methode processImage von FirebaseVisionDocumentTextRecognizer.

  1. Erstellen Sie ein FirebaseVisionImage-Objekt aus Ihrem Bild.

    • Um ein FirebaseVisionImage-Objekt aus einem media.Image-Objekt, z. B. beim Aufnehmen eines Bildes von einem des Geräts an und übergib das media.Image-Objekt und die Rotation auf FirebaseVisionImage.fromMediaImage().

      Wenn Sie die CameraX-Bibliothek verwenden, wird der Drehwert von den Klassen OnImageCapturedListener und ImageAnalysis.Analyzer für Sie berechnet. Sie müssen die Drehung also nur in eine der ROTATION_-Konstanten von Firebase ML umwandeln, bevor Sie FirebaseVisionImage.fromMediaImage() aufrufen:

      Kotlin+KTX

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Vision API
                  // ...
              }
          }
      }
      

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Vision API
              // ...
          }
      }
      

      Wenn Sie keine Kamerabibliothek verwenden, die Ihnen die Rotation des Bildes anzeigt, den Wert aus der Gerätedrehung und der Kameraausrichtung berechnen kann. Sensor im Gerät:

      Kotlin+KTX

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
              .getCameraCharacteristics(cameraId)
              .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Übergeben Sie dann das media.Image-Objekt und den Rotationswert auf FirebaseVisionImage.fromMediaImage():

      Kotlin+KTX

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
    • Wenn Sie ein FirebaseVisionImage-Objekt aus einem Datei-URI erstellen möchten, übergeben Sie den App-Kontext und den Datei-URI an FirebaseVisionImage.fromFilePath(). Dies ist nützlich, wenn Sie Verwenden Sie den Intent ACTION_GET_CONTENT, um den Nutzer zur Auswahl aufzufordern ein Bild aus ihrer Galerie-App.

      Kotlin+KTX

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }
    • Um ein FirebaseVisionImage-Objekt aus einem ByteBuffer oder einem Byte-Array, berechnen Sie zuerst das Bild Rotation wie oben für die media.Image-Eingabe beschrieben.

      Erstellen Sie dann ein FirebaseVisionImageMetadata-Objekt. die die Höhe, Breite, Farbcodierung, und Rotation:

      Kotlin+KTX

      val metadata = FirebaseVisionImageMetadata.Builder()
          .setWidth(480) // 480x360 is typically sufficient for
          .setHeight(360) // image recognition
          .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
          .setRotation(rotation)
          .build()

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Verwende den Puffer oder das Array und das Metadatenobjekt, um ein FirebaseVisionImage-Objekt zu erstellen:

      Kotlin+KTX

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
    • So erstellen Sie ein FirebaseVisionImage-Objekt aus einem Bitmap-Objekt:

      Kotlin+KTX

      val image = FirebaseVisionImage.fromBitmap(bitmap)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
      Das durch das Objekt Bitmap dargestellte Bild muss aufrecht und ohne zusätzliche Drehung aufrecht.

  2. Instanz von FirebaseVisionDocumentTextRecognizer abrufen:

    Kotlin+KTX

    val detector = FirebaseVision.getInstance()
        .cloudDocumentTextRecognizer
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    val options = FirebaseVisionCloudDocumentRecognizerOptions.Builder()
        .setLanguageHints(listOf("en", "hi"))
        .build()
    val detector = FirebaseVision.getInstance()
        .getCloudDocumentTextRecognizer(options)

    Java

    FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance()
            .getCloudDocumentTextRecognizer();
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FirebaseVisionCloudDocumentRecognizerOptions options =
            new FirebaseVisionCloudDocumentRecognizerOptions.Builder()
                    .setLanguageHints(Arrays.asList("en", "hi"))
                    .build();
    FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance()
            .getCloudDocumentTextRecognizer(options);

  3. Übergeben Sie zuletzt das Bild an die Methode processImage:

    Kotlin+KTX

    detector.processImage(myImage)
        .addOnSuccessListener { firebaseVisionDocumentText ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

    Java

    detector.processImage(myImage)
            .addOnSuccessListener(new OnSuccessListener<FirebaseVisionDocumentText>() {
                @Override
                public void onSuccess(FirebaseVisionDocumentText result) {
                    // Task completed successfully
                    // ...
                }
            })
            .addOnFailureListener(new OnFailureListener() {
                @Override
                public void onFailure(@NonNull Exception e) {
                    // Task failed with an exception
                    // ...
                }
            });

2. Text aus erkannten Textblöcken extrahieren

Wenn der Vorgang zur Texterkennung erfolgreich war, wird ein FirebaseVisionDocumentText-Objekt zurückgegeben. A Das Objekt FirebaseVisionDocumentText enthält den vollständigen Text, der im Feld und eine Hierarchie von Objekten, die die Struktur des erkannten Dokument:

Für jedes Block-, Paragraph-, Word- und Symbol-Objekt können Sie den Wert in der Region erkannten Text und die Begrenzungskoordinaten der Region.

Beispiel:

Kotlin+KTX

val resultText = result.text
for (block in result.blocks) {
    val blockText = block.text
    val blockConfidence = block.confidence
    val blockRecognizedLanguages = block.recognizedLanguages
    val blockFrame = block.boundingBox
    for (paragraph in block.paragraphs) {
        val paragraphText = paragraph.text
        val paragraphConfidence = paragraph.confidence
        val paragraphRecognizedLanguages = paragraph.recognizedLanguages
        val paragraphFrame = paragraph.boundingBox
        for (word in paragraph.words) {
            val wordText = word.text
            val wordConfidence = word.confidence
            val wordRecognizedLanguages = word.recognizedLanguages
            val wordFrame = word.boundingBox
            for (symbol in word.symbols) {
                val symbolText = symbol.text
                val symbolConfidence = symbol.confidence
                val symbolRecognizedLanguages = symbol.recognizedLanguages
                val symbolFrame = symbol.boundingBox
            }
        }
    }
}

Java

String resultText = result.getText();
for (FirebaseVisionDocumentText.Block block: result.getBlocks()) {
    String blockText = block.getText();
    Float blockConfidence = block.getConfidence();
    List<RecognizedLanguage> blockRecognizedLanguages = block.getRecognizedLanguages();
    Rect blockFrame = block.getBoundingBox();
    for (FirebaseVisionDocumentText.Paragraph paragraph: block.getParagraphs()) {
        String paragraphText = paragraph.getText();
        Float paragraphConfidence = paragraph.getConfidence();
        List<RecognizedLanguage> paragraphRecognizedLanguages = paragraph.getRecognizedLanguages();
        Rect paragraphFrame = paragraph.getBoundingBox();
        for (FirebaseVisionDocumentText.Word word: paragraph.getWords()) {
            String wordText = word.getText();
            Float wordConfidence = word.getConfidence();
            List<RecognizedLanguage> wordRecognizedLanguages = word.getRecognizedLanguages();
            Rect wordFrame = word.getBoundingBox();
            for (FirebaseVisionDocumentText.Symbol symbol: word.getSymbols()) {
                String symbolText = symbol.getText();
                Float symbolConfidence = symbol.getConfidence();
                List<RecognizedLanguage> symbolRecognizedLanguages = symbol.getRecognizedLanguages();
                Rect symbolFrame = symbol.getBoundingBox();
            }
        }
    }
}

Nächste Schritte