Você pode usar o Firebase ML para rotular objetos reconhecidos em uma imagem. Consulte a visão geral para obter informações sobre os recursos desta API.
Antes de você começar
- Adicione o Firebase ao seu projeto Android , caso ainda não o tenha feito.
- No arquivo Gradle do módulo (nível do aplicativo) (geralmente
<project>/<app-module>/build.gradle.kts
ou<project>/<app-module>/build.gradle
), adicione a dependência para o Firebase ML Biblioteca de visão para Android. Recomendamos usar o Firebase Android BoM para controlar o controle de versão da biblioteca.dependencies { // Import the BoM for the Firebase platform implementation(platform("com.google.firebase:firebase-bom:32.8.0")) // Add the dependency for the Firebase ML Vision library // When using the BoM, you don't specify versions in Firebase library dependencies implementation 'com.google.firebase:firebase-ml-vision' }
Ao usar o Firebase Android BoM , seu aplicativo sempre usará versões compatíveis das bibliotecas do Firebase Android.
Procurando um módulo de biblioteca específico para Kotlin? A partir de outubro de 2023 (Firebase BoM 32.5.0) , tanto os desenvolvedores Kotlin quanto os Java podem depender do módulo da biblioteca principal (para obter detalhes, consulte o FAQ sobre esta iniciativa ).(Alternativa) Adicionar dependências da biblioteca Firebase sem usar o BoM
Se você optar por não usar o Firebase BoM, deverá especificar cada versão da biblioteca do Firebase em sua linha de dependência.
Observe que se você usa várias bibliotecas do Firebase no seu aplicativo, é altamente recomendável usar a BoM para gerenciar as versões da biblioteca, o que garante que todas as versões sejam compatíveis.
dependencies { // Add the dependency for the Firebase ML Vision library // When NOT using the BoM, you must specify versions in Firebase library dependencies implementation 'com.google.firebase:firebase-ml-vision:24.1.0' }
Se você ainda não habilitou APIs baseadas em nuvem para seu projeto, faça-o agora:
- Abra a página APIs do Firebase ML do console do Firebase.
Se você ainda não atualizou seu projeto para o plano de preços Blaze, clique em Atualizar para fazer isso. (Você será solicitado a atualizar somente se o seu projeto não estiver no plano Blaze.)
Somente projetos no nível Blaze podem usar APIs baseadas em nuvem.
- Se as APIs baseadas em nuvem ainda não estiverem habilitadas, clique em Habilitar APIs baseadas em nuvem .
Agora você está pronto para rotular imagens.
1. Prepare a imagem de entrada
Crie um objetoFirebaseVisionImage
a partir da sua imagem. O rotulador de imagem é executado mais rapidamente quando você usa um Bitmap
ou, se você usa a API camera2, um media.Image
formatado em JPEG, que são recomendados quando possível.Para criar um objeto
FirebaseVisionImage
a partir de um objetomedia.Image
, como ao capturar uma imagem da câmera de um dispositivo, passe o objetomedia.Image
e a rotação da imagem paraFirebaseVisionImage.fromMediaImage()
.Se você usa a biblioteca CameraX , as classes
OnImageCapturedListener
eImageAnalysis.Analyzer
calculam o valor de rotação para você, então você só precisa converter a rotação em uma das constantesROTATION_
do Firebase ML antes de chamarFirebaseVisionImage.fromMediaImage()
:Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Vision API // ... } }
Se você não usa uma biblioteca de câmeras que fornece a rotação da imagem, você pode calculá-la a partir da rotação do dispositivo e da orientação do sensor da câmera no dispositivo:
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Em seguida, passe o objeto
media.Image
e o valor de rotação paraFirebaseVisionImage.fromMediaImage()
:Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
- Para criar um objeto
FirebaseVisionImage
a partir de um URI de arquivo, passe o contexto do aplicativo e o URI do arquivo paraFirebaseVisionImage.fromFilePath()
. Isso é útil quando você usa uma intentACTION_GET_CONTENT
para solicitar que o usuário selecione uma imagem do aplicativo de galeria.Kotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
- Para criar um objeto
FirebaseVisionImage
a partir de umByteBuffer
ou de uma matriz de bytes, primeiro calcule a rotação da imagem conforme descrito acima para a entradamedia.Image
.Em seguida, crie um objeto
FirebaseVisionImageMetadata
que contenha a altura, a largura, o formato de codificação de cores e a rotação da imagem:Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Use o buffer ou array e o objeto de metadados para criar um objeto
FirebaseVisionImage
:Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
- Para criar um objeto
FirebaseVisionImage
a partir de um objetoBitmap
:A imagem representada pelo objetoKotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Bitmap
deve estar na vertical, sem necessidade de rotação adicional.
2. Configure e execute o rotulador de imagens
Para rotular objetos em uma imagem, passe o objetoFirebaseVisionImage
para o método processImage
do FirebaseVisionImageLabeler
.Primeiro, obtenha uma instância de
FirebaseVisionImageLabeler
.Kotlin+KTX
val labeler = FirebaseVision.getInstance().getCloudImageLabeler() // Or, to set the minimum confidence required: // val options = FirebaseVisionCloudImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build() // val labeler = FirebaseVision.getInstance().getCloudImageLabeler(options)
Java
FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() .getCloudImageLabeler(); // Or, to set the minimum confidence required: // FirebaseVisionCloudImageLabelerOptions options = // new FirebaseVisionCloudImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build(); // FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() // .getCloudImageLabeler(options);
Em seguida, passe a imagem para o método
processImage()
:Kotlin+KTX
labeler.processImage(image) .addOnSuccessListener { labels -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
labeler.processImage(image) .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionImageLabel>>() { @Override public void onSuccess(List<FirebaseVisionImageLabel> labels) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
3. Obtenha informações sobre objetos rotulados
Se a operação de rotulagem da imagem for bem-sucedida, uma lista de objetosFirebaseVisionImageLabel
será transmitida ao listener de sucesso. Cada objeto FirebaseVisionImageLabel
representa algo que foi rotulado na imagem. Para cada rótulo, você pode obter a descrição do texto do rótulo, seu ID de entidade do Knowledge Graph (se disponível) e a pontuação de confiança da correspondência. Por exemplo: Kotlin+KTX
for (label in labels) {
val text = label.text
val entityId = label.entityId
val confidence = label.confidence
}
Java
for (FirebaseVisionImageLabel label: labels) {
String text = label.getText();
String entityId = label.getEntityId();
float confidence = label.getConfidence();
}
Próximos passos
- Antes de implantar em produção um aplicativo que usa uma API do Cloud, você deve seguir algumas etapas adicionais para evitar e mitigar o efeito do acesso não autorizado à API .