يمكنك استخدام السمة Firebase ML لتصنيف العناصر التي تم التعرّف عليها في الصورة. يمكنك الاطّلاع على نظرة عامة للحصول على معلومات حول واجهة برمجة التطبيقات هذه الجديدة.
قبل البدء
- إذا لم تكن قد فعلت ذلك بالفعل، إضافة Firebase إلى مشروع Android
-
في ملف Gradle للوحدة (على مستوى التطبيق)
(عادةً
<project>/<app-module>/build.gradle.kts
أو<project>/<app-module>/build.gradle
)، إضافة الاعتمادية لمكتبة Firebase ML Vision لنظام Android. ننصح باستخدام Firebase Android BoM للتحكم في إصدارات المكتبة.dependencies { // Import the BoM for the Firebase platform implementation(platform("com.google.firebase:firebase-bom:33.3.0")) // Add the dependency for the Firebase ML Vision library // When using the BoM, you don't specify versions in Firebase library dependencies implementation 'com.google.firebase:firebase-ml-vision' }
باستخدام Firebase Android BoM، سيستخدم تطبيقك دائمًا إصدارات متوافقة من مكتبات Android في Firebase.
(بديل) إضافة اعتماديات مكتبة Firebase بدون استخدام BoM
إذا اخترت عدم استخدام Firebase BoM، يجب تحديد كل إصدار من إصدارات مكتبة Firebase. في سطر التبعية.
يُرجى ملاحظة أنّه إذا كنت تستخدم مكتبات Firebase متعددة في تطبيقك، سنعتمد بشدة ننصح باستخدام BoM لإدارة نُسخ المكتبة، ما يضمن نشر جميع النُسخ متوافقة.
dependencies { // Add the dependency for the Firebase ML Vision library // When NOT using the BoM, you must specify versions in Firebase library dependencies implementation 'com.google.firebase:firebase-ml-vision:24.1.0' }
-
إذا لم يسبق لك تفعيل واجهات برمجة التطبيقات المستنِدة إلى السحابة الإلكترونية لمشروعك، يُرجى إجراء ذلك الآن:
- افتح Firebase ML. صفحة واجهات برمجة التطبيقات لوحدة تحكُّم Firebase.
-
إذا لم تكن قد أجريت ترقية لمشروعك إلى خطة أسعار Blaze، انقر على يجب الترقية لإجراء ذلك. (ستتم مطالبتك بالترقية فقط إذا كان مشروعك ليس على خطة Blaze).
يمكن للمشروعات على مستوى Blaze فقط استخدام واجهات برمجة التطبيقات المستنِدة إلى السحابة الإلكترونية.
- إذا لم تكن واجهات برمجة التطبيقات المستنِدة إلى السحابة الإلكترونية مُفعَّلة، انقر على تفعيل البيانات المستندة إلى السحابة الإلكترونية. API.
أنت الآن جاهز لتسمية الصور.
1- تحضير صورة الإدخال
أنشئ عنصرFirebaseVisionImage
من صورتك.
يتم تشغيل مصنِّف الصور بشكل أسرع عند استخدام Bitmap
أو إذا استخدمت
الكاميرا2 API، وهي media.Image
بتنسيق JPEG، ويُنصح باستخدامها في حال
ممكن.
-
لإنشاء عنصر
FirebaseVisionImage
من كائنmedia.Image
، مثل عند التقاط صورة من كاميرا الجهاز، يُرجى تمرير كائنmedia.Image
تدوير إلىFirebaseVisionImage.fromMediaImage()
.إذا كنت تستخدم CameraX و
OnImageCapturedListener
تحتسب صفوفImageAnalysis.Analyzer
قيمة عرض الإعلانات بالتناوب. بالنسبة لك، لذا يجب عليك فقط تحويل التدوير إلى واحد من Firebase MLROTATION_
ثوابت قبل إجراء الطلبFirebaseVisionImage.fromMediaImage()
:Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Vision API // ... } }
إذا لم تكن تستخدم مكتبة كاميرا تمنحك تدوير الصورة، يمكنك من دوران الجهاز واتجاه الكاميرا جهاز الاستشعار في الجهاز:
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
بعد ذلك، مرِّر الكائن
media.Image
قيمة التدوير إلىFirebaseVisionImage.fromMediaImage()
:Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
- لإنشاء كائن
FirebaseVisionImage
من معرّف موارد منتظم (URI) لملف، مرِّر سياق التطبيق ومعرّف الموارد المنتظم (URI) للملفFirebaseVisionImage.fromFilePath()
يكون ذلك مفيدًا عندما يجب استخدام هدفACTION_GET_CONTENT
لتطلب من المستخدم الاختيار. صورة من تطبيق المعرض الخاص به.Kotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
- لإنشاء عنصر
FirebaseVisionImage
منByteBuffer
أو صفيف بايت، احسب الصورة أولاً تدوير كما هو موضح أعلاه لإدخالmedia.Image
.بعد ذلك، يمكنك إنشاء كائن
FirebaseVisionImageMetadata
يتضمن ارتفاع الصورة وعرضها وتنسيق ترميز الألوان لها وتدوير:Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
استخدم المخزن المؤقت أو الصفيفة وكائن البيانات الوصفية لإنشاء كائن
FirebaseVisionImage
:Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
- لإنشاء عنصر
FirebaseVisionImage
من كائنBitmap
:Kotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Bitmap
مستقيمًا، دون الحاجة إلى دوران إضافي.
2- ضبط أداة تصنيف الصور وتشغيلها
لتصنيف العناصر في صورة، مرِّر كائنFirebaseVisionImage
إلى
طريقة processImage
لـ FirebaseVisionImageLabeler
.
أولاً، احصل على مثيل
FirebaseVisionImageLabeler
Kotlin+KTX
val labeler = FirebaseVision.getInstance().getCloudImageLabeler() // Or, to set the minimum confidence required: // val options = FirebaseVisionCloudImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build() // val labeler = FirebaseVision.getInstance().getCloudImageLabeler(options)
Java
FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() .getCloudImageLabeler(); // Or, to set the minimum confidence required: // FirebaseVisionCloudImageLabelerOptions options = // new FirebaseVisionCloudImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build(); // FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() // .getCloudImageLabeler(options);
بعد ذلك، اضبط الصورة على طريقة
processImage()
:Kotlin+KTX
labeler.processImage(image) .addOnSuccessListener { labels -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
labeler.processImage(image) .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionImageLabel>>() { @Override public void onSuccess(List<FirebaseVisionImageLabel> labels) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
3- الحصول على معلومات عن العناصر المصنّفة
إذا نجحت عملية تصنيف الصور، ستظهر قائمة سيتم تمريرFirebaseVisionImageLabel
من العناصر إلى
مستمع للنجاح. يمثل كل عنصر FirebaseVisionImageLabel
عنصرًا
تم تصنيفه في الصورة. لكل تصنيف، يمكنك الحصول على نص التصنيف
والوصف الخاص بها
رقم تعريف جهة "الرسم البياني المعرفي"
(إذا كان متاحًا) ونتيجة الثقة للمطابقة. على سبيل المثال:
Kotlin+KTX
for (label in labels) {
val text = label.text
val entityId = label.entityId
val confidence = label.confidence
}
Java
for (FirebaseVisionImageLabel label: labels) {
String text = label.getText();
String entityId = label.getEntityId();
float confidence = label.getConfidence();
}
الخطوات التالية
- قبل نشر تطبيق يستخدم Cloud API في قناة الإصدار العلني، يجب إجراء بعض الخطوات الإضافية لمنع وتخفيف تأثير الوصول غير المُصرح به إلى واجهة برمجة التطبيقات.