Sau khi huấn luyện mô hình của riêng mình bằng AutoML Vision Edge, bạn có thể sử dụng mô hình đó trong ứng dụng để phát hiện đối tượng trong hình ảnh.
Có hai cách để tích hợp mô hình được huấn luyện từ AutoML Vision Edge: Bạn có thể gói mô hình bằng cách đặt mô hình đó vào thư mục tài sản của ứng dụng hoặc bạn có thể tải mô hình đó xuống một cách linh động từ Firebase.
Tuỳ chọn gói mô hình | |
---|---|
Được đóng gói trong ứng dụng |
|
Được lưu trữ bằng Firebase |
|
Trước khi bắt đầu
Nếu bạn muốn tải mô hình xuống, hãy nhớ thêm Firebase vào dự án Android nếu bạn chưa thực hiện việc này. Bạn không cần thực hiện việc này khi gói mô hình.
Thêm các phần phụ thuộc cho thư viện Tác vụ TensorFlow Lite vào tệp gradle cấp ứng dụng của mô-đun, thường là
app/build.gradle
:Cách gói một mô hình với ứng dụng:
dependencies { // ... // Object detection with a bundled Auto ML model implementation 'org.tensorflow:tensorflow-lite-task-vision:0.0.0-nightly-SNAPSHOT' }
Để tải mô hình xuống một cách linh động từ Firebase, hãy thêm phần phụ thuộc Firebase ML:
dependencies { // ... // Object detection with an Auto ML model deployed to Firebase implementation platform('com.google.firebase:firebase-bom:26.1.1') implementation 'com.google.firebase:firebase-ml-model-interpreter' implementation 'org.tensorflow:tensorflow-lite-task-vision:0.0.0-nightly' }
1. Tải mô hình
Định cấu hình nguồn mô hình cục bộ
Cách gói mô hình với ứng dụng:
- Giải nén mô hình từ tệp lưu trữ zip mà bạn đã tải xuống từ bảng điều khiển Google Cloud.
- Đưa mô hình vào gói ứng dụng:
- Nếu bạn không có thư mục tài sản trong dự án, hãy tạo thư mục đó bằng cách nhấp chuột phải vào thư mục
app/
, sau đó nhấp vào New > Folder > Assets Folder (Mới > Thư mục > Thư mục tài sản). - Sao chép tệp mô hình
tflite
có siêu dữ liệu được nhúng vào thư mục tài sản.
- Nếu bạn không có thư mục tài sản trong dự án, hãy tạo thư mục đó bằng cách nhấp chuột phải vào thư mục
Thêm nội dung sau vào tệp
build.gradle
của ứng dụng để đảm bảo Gradle không nén tệp mô hình khi tạo ứng dụng:android { // ... aaptOptions { noCompress "tflite" } }
Tệp mô hình sẽ được đưa vào gói ứng dụng và có sẵn dưới dạng tài sản thô.
Định cấu hình nguồn mô hình do Firebase lưu trữ
Để sử dụng mô hình được lưu trữ từ xa, hãy tạo một đối tượng RemoteModel
, chỉ định tên mà bạn đã gán cho mô hình khi phát hành:
Java
// Specify the name you assigned when you deployed the model.
FirebaseCustomRemoteModel remoteModel =
new FirebaseCustomRemoteModel.Builder("your_model").build();
Kotlin
// Specify the name you assigned when you deployed the model.
val remoteModel =
FirebaseCustomRemoteModel.Builder("your_model_name").build()
Sau đó, hãy bắt đầu tác vụ tải mô hình xuống, chỉ định các điều kiện mà bạn muốn cho phép tải xuống. Nếu mô hình không có trên thiết bị hoặc nếu có phiên bản mô hình mới hơn, thì tác vụ sẽ tải mô hình xuống không đồng bộ từ Firebase:
Java
DownloadConditions downloadConditions = new DownloadConditions.Builder()
.requireWifi()
.build();
RemoteModelManager.getInstance().download(remoteModel, downloadConditions)
.addOnSuccessListener(new OnSuccessListener<Void>() {
@Override
public void onSuccess(@NonNull Task<Void> task) {
// Success.
}
});
Kotlin
val downloadConditions = DownloadConditions.Builder()
.requireWifi()
.build()
RemoteModelManager.getInstance().download(remoteModel, downloadConditions)
.addOnSuccessListener {
// Success.
}
Nhiều ứng dụng bắt đầu tác vụ tải xuống trong mã khởi chạy, nhưng bạn có thể làm như vậy bất cứ lúc nào trước khi cần sử dụng mô hình.
Tạo trình phát hiện đối tượng từ mô hình
Sau khi bạn định cấu hình các nguồn mô hình, hãy tạo một đối tượng ObjectDetector
từ một trong các nguồn đó.
Nếu bạn chỉ có một mô hình được đóng gói cục bộ, bạn chỉ cần tạo một trình phát hiện đối tượng từ tệp mô hình và định cấu hình ngưỡng điểm số tin cậy mà bạn muốn yêu cầu (xem phần Đánh giá mô hình):
Java
// Initialization
ObjectDetectorOptions options = ObjectDetectorOptions.builder()
.setScoreThreshold(0) // Evaluate your model in the Google Cloud console
// to determine an appropriate value.
.build();
ObjectDetector objectDetector = ObjectDetector.createFromFileAndOptions(context, modelFile, options);
Kotlin
// Initialization
val options = ObjectDetectorOptions.builder()
.setScoreThreshold(0) // Evaluate your model in the Google Cloud console
// to determine an appropriate value.
.build()
val objectDetector = ObjectDetector.createFromFileAndOptions(context, modelFile, options)
Nếu có một mô hình được lưu trữ từ xa, bạn sẽ phải kiểm tra để đảm bảo rằng mô hình đó đã được tải xuống trước khi chạy. Bạn có thể kiểm tra trạng thái của tác vụ tải mô hình xuống bằng phương thức isModelDownloaded()
của trình quản lý mô hình.
Mặc dù bạn chỉ phải xác nhận điều này trước khi chạy trình phát hiện đối tượng, nhưng nếu bạn có cả mô hình được lưu trữ từ xa và mô hình được đóng gói cục bộ, thì bạn nên thực hiện việc kiểm tra này khi tạo bản sao của trình phát hiện đối tượng: tạo trình phát hiện đối tượng từ mô hình từ xa nếu mô hình đó đã được tải xuống và từ mô hình cục bộ nếu không.
Java
FirebaseModelManager.getInstance().isModelDownloaded(remoteModel)
.addOnSuccessListener(new OnSuccessListener<Boolean>() {
@Override
public void onSuccess(Boolean isDownloaded) {
}
});
Kotlin
FirebaseModelManager.getInstance().isModelDownloaded(remoteModel)
.addOnSuccessListener { success ->
}
Nếu chỉ có một mô hình được lưu trữ từ xa, bạn nên tắt chức năng liên quan đến mô hình (ví dụ: làm mờ hoặc ẩn một phần giao diện người dùng) cho đến khi xác nhận rằng mô hình đã được tải xuống. Bạn có thể thực hiện việc này bằng cách đính kèm trình nghe vào phương thức download()
của trình quản lý mô hình.
Sau khi bạn biết mô hình đã được tải xuống, hãy tạo một trình phát hiện đối tượng từ tệp mô hình:
Java
FirebaseModelManager.getInstance().getLatestModelFile(remoteModel)
.addOnCompleteListener(new OnCompleteListener<File>() {
@Override
public void onComplete(@NonNull Task<File> task) {
File modelFile = task.getResult();
if (modelFile != null) {
ObjectDetectorOptions options = ObjectDetectorOptions.builder()
.setScoreThreshold(0)
.build();
objectDetector = ObjectDetector.createFromFileAndOptions(
getApplicationContext(), modelFile.getPath(), options);
}
}
});
Kotlin
FirebaseModelManager.getInstance().getLatestModelFile(remoteModel)
.addOnSuccessListener { modelFile ->
val options = ObjectDetectorOptions.builder()
.setScoreThreshold(0f)
.build()
objectDetector = ObjectDetector.createFromFileAndOptions(
applicationContext, modelFile.path, options)
}
2. Chuẩn bị hình ảnh đầu vào
Sau đó, đối với mỗi hình ảnh mà bạn muốn gắn nhãn, hãy tạo một đối tượng TensorImage
từ hình ảnh đó. Bạn có thể tạo đối tượng TensorImage
từ Bitmap
bằng phương thức fromBitmap
:
Java
TensorImage image = TensorImage.fromBitmap(bitmap);
Kotlin
val image = TensorImage.fromBitmap(bitmap)
Nếu dữ liệu hình ảnh không nằm trong Bitmap
, bạn có thể tải một mảng pixel như trong tài liệu về TensorFlow Lite.
3. Chạy trình phát hiện đối tượng
Để phát hiện các đối tượng trong hình ảnh, hãy truyền đối tượng TensorImage
vào phương thức detect()
của ObjectDetector
.
Java
List<Detection> results = objectDetector.detect(image);
Kotlin
val results = objectDetector.detect(image)
4. Nhận thông tin về các đối tượng được gắn nhãn
Nếu thành công, thao tác phát hiện đối tượng sẽ trả về danh sách các đối tượng Detection
. Mỗi đối tượng Detection
đại diện cho một đối tượng đã được phát hiện trong hình ảnh. Bạn có thể lấy hộp giới hạn và nhãn của từng đối tượng.
Ví dụ:
Java
for (Detection result : results) {
RectF bounds = result.getBoundingBox();
List<Category> labels = result.getCategories();
}
Kotlin
for (result in results) {
val bounds = result.getBoundingBox()
val labels = result.getCategories()
}
Mẹo cải thiện hiệu suất theo thời gian thực
Nếu bạn muốn gắn nhãn hình ảnh trong một ứng dụng theo thời gian thực, hãy làm theo các nguyên tắc sau để đạt được tốc độ khung hình tốt nhất:
- Điều tiết các lệnh gọi đến trình gắn nhãn hình ảnh. Nếu một khung video mới xuất hiện trong khi trình gắn nhãn hình ảnh đang chạy, hãy thả khung đó. Hãy xem lớp
VisionProcessorBase
trong ứng dụng mẫu bắt đầu nhanh để biết ví dụ. - Nếu bạn đang sử dụng kết quả của trình gắn nhãn hình ảnh để phủ hình ảnh đồ hoạ lên hình ảnh đầu vào, trước tiên, hãy lấy kết quả, sau đó kết xuất hình ảnh và lớp phủ trong một bước. Bằng cách này, bạn chỉ kết xuất một lần cho mỗi khung đầu vào trên bề mặt hiển thị. Hãy xem các lớp
CameraSourcePreview
vàGraphicOverlay
trong ứng dụng mẫu bắt đầu nhanh để biết ví dụ. -
Nếu bạn sử dụng API Camera2, hãy chụp ảnh ở định dạng
ImageFormat.YUV_420_888
.Nếu bạn sử dụng API Máy ảnh cũ, hãy chụp ảnh ở định dạng
ImageFormat.NV21
.