在 iOS 上使用 ML Kit 辨識圖片中的文字

您可以使用 ML Kit 辨識圖片中的文字,ML Kit 提供一般用途的 API,適合辨識圖片中的文字 (例如路標上的文字),也提供專為辨識文件文字而最佳化的 API。一般用途 API 包含裝置端和雲端模型。 文件文字辨識功能僅提供雲端模型。如要比較雲端和裝置端模型,請參閱總覽

事前準備

  1. 如果尚未將 Firebase 新增至應用程式,請按照入門指南中的步驟操作。
  2. 在 Podfile 中加入 ML Kit 程式庫:
    pod 'Firebase/MLVision', '6.25.0'
    # If using an on-device API:
    pod 'Firebase/MLVisionTextModel', '6.25.0'
    
    安裝或更新專案的 Pod 後,請務必使用專案的 .xcworkspace 開啟 Xcode 專案。
  3. 在應用程式中匯入 Firebase:

    Swift

    import Firebase

    Objective-C

    @import Firebase;
  4. 如要使用雲端型模型,但尚未為專案啟用雲端型 API,請立即啟用:

    1. 開啟 Firebase 控制台的 ML Kit API 頁面
    2. 如果尚未將專案升級至 Blaze 定價方案,請按一下「升級」。系統只會在專案未採用 Blaze 方案時,提示您升級。

      只有 Blaze 級別的專案才能使用雲端 API。

    3. 如果尚未啟用雲端 API,請按一下「啟用雲端 API」

    如要只使用裝置端模型,可以略過這個步驟。

現在可以開始辨識圖片中的文字。

輸入圖片規範

  • 如要讓 ML Kit 準確辨識文字,輸入圖片必須包含以足夠像素資料呈現的文字。在理想情況下,拉丁文字的每個字元至少應為 16x16 像素。如果是中文、日文和韓文文字 (僅雲端 API 支援),每個字元應為 24x24 像素。一般而言,無論使用哪種語言,字元大於 24x24 像素對準確度沒有幫助。

    舉例來說,如果名片佔滿圖片寬度,640x480 的圖片可能就非常適合掃描名片。如要掃描印在 Letter 尺寸紙張上的文件,可能需要 720x1280 像素的圖片。

  • 如果圖片對焦不佳,可能會影響文字辨識準確度。如果結果不盡理想,請要求使用者重新拍攝圖片。

  • 如果您要在即時應用程式中辨識文字,可能也需要考量輸入圖片的整體尺寸。系統處理較小的圖片時速度較快,因此為了減少延遲,請以較低的解析度擷取圖片 (請注意上述準確度規定),並確保文字盡可能占滿圖片。另請參閱「改善即時成效的訣竅」。


辨識圖片中的文字

如要使用裝置端或雲端模型辨識圖片中的文字,請按照下列說明執行文字辨識器。

1. 執行文字辨識器

將圖片以 `UIImage` 或 `CMSampleBufferRef` 形式傳遞至 `VisionTextRecognizer` 的 `process(_:completion:)` 方法:
  1. 呼叫 onDeviceTextRecognizercloudTextRecognizer 即可取得 VisionTextRecognizer 的執行個體:

    Swift

    如要使用裝置端模型,請按照下列步驟操作:

    let vision = Vision.vision()
    let textRecognizer = vision.onDeviceTextRecognizer()

    如要使用雲端模型,請按照下列步驟操作:

    let vision = Vision.vision()
    let textRecognizer = vision.cloudTextRecognizer()
    
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    let options = VisionCloudTextRecognizerOptions()
    options.languageHints = ["en", "hi"]
    let textRecognizer = vision.cloudTextRecognizer(options: options)

    Objective-C

    如要使用裝置端模型,請按照下列步驟操作:

    FIRVision *vision = [FIRVision vision];
    FIRVisionTextRecognizer *textRecognizer = [vision onDeviceTextRecognizer];

    如要使用雲端模型,請按照下列步驟操作:

    FIRVision *vision = [FIRVision vision];
    FIRVisionTextRecognizer *textRecognizer = [vision cloudTextRecognizer];
    
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FIRVisionCloudTextRecognizerOptions *options =
            [[FIRVisionCloudTextRecognizerOptions alloc] init];
    options.languageHints = @[@"en", @"hi"];
    FIRVisionTextRecognizer *textRecognizer = [vision cloudTextRecognizerWithOptions:options];
  2. 使用 UIImageCMSampleBufferRef 建立 VisionImage 物件。

    如何使用 UIImage

    1. 如有需要,請旋轉圖片,使其 imageOrientation 屬性為 .up
    2. 使用正確旋轉的 UIImage 建立 VisionImage 物件。請勿指定任何旋轉中繼資料,必須使用預設值 .topLeft

      Swift

      let image = VisionImage(image: uiImage)

      Objective-C

      FIRVisionImage *image = [[FIRVisionImage alloc] initWithImage:uiImage];

    如何使用 CMSampleBufferRef

    1. 建立 VisionImageMetadata 物件,指定 CMSampleBufferRef 緩衝區中圖片資料的方向。

      如要取得圖片方向,請執行下列操作:

      Swift

      func imageOrientation(
          deviceOrientation: UIDeviceOrientation,
          cameraPosition: AVCaptureDevice.Position
          ) -> VisionDetectorImageOrientation {
          switch deviceOrientation {
          case .portrait:
              return cameraPosition == .front ? .leftTop : .rightTop
          case .landscapeLeft:
              return cameraPosition == .front ? .bottomLeft : .topLeft
          case .portraitUpsideDown:
              return cameraPosition == .front ? .rightBottom : .leftBottom
          case .landscapeRight:
              return cameraPosition == .front ? .topRight : .bottomRight
          case .faceDown, .faceUp, .unknown:
              return .leftTop
          }
      }

      Objective-C

      - (FIRVisionDetectorImageOrientation)
          imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation
                                 cameraPosition:(AVCaptureDevicePosition)cameraPosition {
        switch (deviceOrientation) {
          case UIDeviceOrientationPortrait:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationLeftTop;
            } else {
              return FIRVisionDetectorImageOrientationRightTop;
            }
          case UIDeviceOrientationLandscapeLeft:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationBottomLeft;
            } else {
              return FIRVisionDetectorImageOrientationTopLeft;
            }
          case UIDeviceOrientationPortraitUpsideDown:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationRightBottom;
            } else {
              return FIRVisionDetectorImageOrientationLeftBottom;
            }
          case UIDeviceOrientationLandscapeRight:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationTopRight;
            } else {
              return FIRVisionDetectorImageOrientationBottomRight;
            }
          default:
            return FIRVisionDetectorImageOrientationTopLeft;
        }
      }

      接著,建立中繼資料物件:

      Swift

      let cameraPosition = AVCaptureDevice.Position.back  // Set to the capture device you used.
      let metadata = VisionImageMetadata()
      metadata.orientation = imageOrientation(
          deviceOrientation: UIDevice.current.orientation,
          cameraPosition: cameraPosition
      )

      Objective-C

      FIRVisionImageMetadata *metadata = [[FIRVisionImageMetadata alloc] init];
      AVCaptureDevicePosition cameraPosition =
          AVCaptureDevicePositionBack;  // Set to the capture device you used.
      metadata.orientation =
          [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation
                                       cameraPosition:cameraPosition];
    2. 使用 CMSampleBufferRef 物件和旋轉中繼資料建立 VisionImage 物件:

      Swift

      let image = VisionImage(buffer: sampleBuffer)
      image.metadata = metadata

      Objective-C

      FIRVisionImage *image = [[FIRVisionImage alloc] initWithBuffer:sampleBuffer];
      image.metadata = metadata;
  3. 接著,將圖片傳遞至 process(_:completion:) 方法:

    Swift

    textRecognizer.process(visionImage) { result, error in
      guard error == nil, let result = result else {
        // ...
        return
      }
    
      // Recognized text
    }

    Objective-C

    [textRecognizer processImage:image
                      completion:^(FIRVisionText *_Nullable result,
                                   NSError *_Nullable error) {
      if (error != nil || result == nil) {
        // ...
        return;
      }
    
      // Recognized text
    }];

2. 從辨識出的文字區塊擷取文字

如果文字辨識作業成功,系統會傳回 [`VisionText`][VisionText] 物件。`VisionText` 物件包含圖片中辨識到的完整文字,以及零或多個 [`VisionTextBlock`][VisionTextBlock] 物件。 每個 `VisionTextBlock` 都代表矩形文字區塊,其中包含零或多個 [`VisionTextLine`][VisionTextLine] 物件。每個 `VisionTextLine` 物件都包含零個或多個 [`VisionTextElement`][VisionTextElement] 物件,代表字詞和類似字詞的實體 (日期、數字等)。針對每個 `VisionTextBlock`、`VisionTextLine` 和 `VisionTextElement` 物件,您可以取得區域中辨識的文字,以及區域的邊界座標。例如:

Swift

let resultText = result.text
for block in result.blocks {
    let blockText = block.text
    let blockConfidence = block.confidence
    let blockLanguages = block.recognizedLanguages
    let blockCornerPoints = block.cornerPoints
    let blockFrame = block.frame
    for line in block.lines {
        let lineText = line.text
        let lineConfidence = line.confidence
        let lineLanguages = line.recognizedLanguages
        let lineCornerPoints = line.cornerPoints
        let lineFrame = line.frame
        for element in line.elements {
            let elementText = element.text
            let elementConfidence = element.confidence
            let elementLanguages = element.recognizedLanguages
            let elementCornerPoints = element.cornerPoints
            let elementFrame = element.frame
        }
    }
}

Objective-C

NSString *resultText = result.text;
for (FIRVisionTextBlock *block in result.blocks) {
  NSString *blockText = block.text;
  NSNumber *blockConfidence = block.confidence;
  NSArray<FIRVisionTextRecognizedLanguage *> *blockLanguages = block.recognizedLanguages;
  NSArray<NSValue *> *blockCornerPoints = block.cornerPoints;
  CGRect blockFrame = block.frame;
  for (FIRVisionTextLine *line in block.lines) {
    NSString *lineText = line.text;
    NSNumber *lineConfidence = line.confidence;
    NSArray<FIRVisionTextRecognizedLanguage *> *lineLanguages = line.recognizedLanguages;
    NSArray<NSValue *> *lineCornerPoints = line.cornerPoints;
    CGRect lineFrame = line.frame;
    for (FIRVisionTextElement *element in line.elements) {
      NSString *elementText = element.text;
      NSNumber *elementConfidence = element.confidence;
      NSArray<FIRVisionTextRecognizedLanguage *> *elementLanguages = element.recognizedLanguages;
      NSArray<NSValue *> *elementCornerPoints = element.cornerPoints;
      CGRect elementFrame = element.frame;
    }
  }
}

提升即時成效的訣竅

如要在即時應用程式中使用裝置端模型辨識文字,請按照下列準則操作,以達到最佳影格速率:

  • 限制對文字辨識工具的呼叫次數。如果文字辨識器執行時有新的視訊影格可用,請捨棄該影格。
  • 如果您要使用文字辨識器的輸出內容,在輸入圖片上疊加圖像,請先從 ML Kit 取得結果,然後在單一步驟中算繪圖片並疊加圖像。這樣做的話,每個輸入影格只會轉譯到顯示表面一次。如需範例,請參閱展示範例應用程式中的 previewOverlayViewFIRDetectionOverlayView 類別。
  • 建議您以較低的解析度拍攝圖片。但請注意,這個 API 的圖片尺寸也有相關規定。

後續步驟


辨識文件圖片中的文字

如要辨識文件中的文字,請按照下列說明設定及執行雲端文件文字辨識器。

下文所述的文件文字辨識 API 提供介面,可更輕鬆地處理文件圖片。不過,如果您偏好稀疏文字 API 提供的介面,可以改用該介面掃描文件,方法是將雲端文字辨識器設定為使用密集文字模型

如要使用文件文字辨識 API,請按照下列指示操作:

1. 執行文字辨識器

將圖片做為 UIImageCMSampleBufferRef 傳遞至 VisionDocumentTextRecognizerprocess(_:completion:) 方法:

  1. 呼叫 cloudDocumentTextRecognizer 即可取得 VisionDocumentTextRecognizer 的執行個體:

    Swift

    let vision = Vision.vision()
    let textRecognizer = vision.cloudDocumentTextRecognizer()
    
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    let options = VisionCloudDocumentTextRecognizerOptions()
    options.languageHints = ["en", "hi"]
    let textRecognizer = vision.cloudDocumentTextRecognizer(options: options)

    Objective-C

    FIRVision *vision = [FIRVision vision];
    FIRVisionDocumentTextRecognizer *textRecognizer = [vision cloudDocumentTextRecognizer];
    
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FIRVisionCloudDocumentTextRecognizerOptions *options =
            [[FIRVisionCloudDocumentTextRecognizerOptions alloc] init];
    options.languageHints = @[@"en", @"hi"];
    FIRVisionDocumentTextRecognizer *textRecognizer = [vision cloudDocumentTextRecognizerWithOptions:options];
  2. 使用 UIImageCMSampleBufferRef 建立 VisionImage 物件。

    如何使用 UIImage

    1. 如有需要,請旋轉圖片,使其 imageOrientation 屬性為 .up
    2. 使用正確旋轉的 UIImage 建立 VisionImage 物件。請勿指定任何旋轉中繼資料,必須使用預設值 .topLeft

      Swift

      let image = VisionImage(image: uiImage)

      Objective-C

      FIRVisionImage *image = [[FIRVisionImage alloc] initWithImage:uiImage];

    如何使用 CMSampleBufferRef

    1. 建立 VisionImageMetadata 物件,指定 CMSampleBufferRef 緩衝區中圖片資料的方向。

      如要取得圖片方向,請執行下列操作:

      Swift

      func imageOrientation(
          deviceOrientation: UIDeviceOrientation,
          cameraPosition: AVCaptureDevice.Position
          ) -> VisionDetectorImageOrientation {
          switch deviceOrientation {
          case .portrait:
              return cameraPosition == .front ? .leftTop : .rightTop
          case .landscapeLeft:
              return cameraPosition == .front ? .bottomLeft : .topLeft
          case .portraitUpsideDown:
              return cameraPosition == .front ? .rightBottom : .leftBottom
          case .landscapeRight:
              return cameraPosition == .front ? .topRight : .bottomRight
          case .faceDown, .faceUp, .unknown:
              return .leftTop
          }
      }

      Objective-C

      - (FIRVisionDetectorImageOrientation)
          imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation
                                 cameraPosition:(AVCaptureDevicePosition)cameraPosition {
        switch (deviceOrientation) {
          case UIDeviceOrientationPortrait:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationLeftTop;
            } else {
              return FIRVisionDetectorImageOrientationRightTop;
            }
          case UIDeviceOrientationLandscapeLeft:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationBottomLeft;
            } else {
              return FIRVisionDetectorImageOrientationTopLeft;
            }
          case UIDeviceOrientationPortraitUpsideDown:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationRightBottom;
            } else {
              return FIRVisionDetectorImageOrientationLeftBottom;
            }
          case UIDeviceOrientationLandscapeRight:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationTopRight;
            } else {
              return FIRVisionDetectorImageOrientationBottomRight;
            }
          default:
            return FIRVisionDetectorImageOrientationTopLeft;
        }
      }

      接著,建立中繼資料物件:

      Swift

      let cameraPosition = AVCaptureDevice.Position.back  // Set to the capture device you used.
      let metadata = VisionImageMetadata()
      metadata.orientation = imageOrientation(
          deviceOrientation: UIDevice.current.orientation,
          cameraPosition: cameraPosition
      )

      Objective-C

      FIRVisionImageMetadata *metadata = [[FIRVisionImageMetadata alloc] init];
      AVCaptureDevicePosition cameraPosition =
          AVCaptureDevicePositionBack;  // Set to the capture device you used.
      metadata.orientation =
          [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation
                                       cameraPosition:cameraPosition];
    2. 使用 CMSampleBufferRef 物件和旋轉中繼資料建立 VisionImage 物件:

      Swift

      let image = VisionImage(buffer: sampleBuffer)
      image.metadata = metadata

      Objective-C

      FIRVisionImage *image = [[FIRVisionImage alloc] initWithBuffer:sampleBuffer];
      image.metadata = metadata;
  3. 接著,將圖片傳遞至 process(_:completion:) 方法:

    Swift

    textRecognizer.process(visionImage) { result, error in
      guard error == nil, let result = result else {
        // ...
        return
      }
    
      // Recognized text
    }

    Objective-C

    [textRecognizer processImage:image
                      completion:^(FIRVisionDocumentText *_Nullable result,
                                   NSError *_Nullable error) {
      if (error != nil || result == nil) {
        // ...
        return;
      }
    
        // Recognized text
    }];

2. 從辨識出的文字區塊擷取文字

如果文字辨識作業成功,系統會傳回 VisionDocumentText 物件。VisionDocumentText 物件包含圖片中辨識到的完整文字,以及反映辨識文件結構的物件階層:

針對每個 VisionDocumentTextBlockVisionDocumentTextParagraphVisionDocumentTextWordVisionDocumentTextSymbol 物件,您可以取得該區域中辨識到的文字,以及該區域的邊界座標。

例如:

Swift

let resultText = result.text
for block in result.blocks {
    let blockText = block.text
    let blockConfidence = block.confidence
    let blockRecognizedLanguages = block.recognizedLanguages
    let blockBreak = block.recognizedBreak
    let blockCornerPoints = block.cornerPoints
    let blockFrame = block.frame
    for paragraph in block.paragraphs {
        let paragraphText = paragraph.text
        let paragraphConfidence = paragraph.confidence
        let paragraphRecognizedLanguages = paragraph.recognizedLanguages
        let paragraphBreak = paragraph.recognizedBreak
        let paragraphCornerPoints = paragraph.cornerPoints
        let paragraphFrame = paragraph.frame
        for word in paragraph.words {
            let wordText = word.text
            let wordConfidence = word.confidence
            let wordRecognizedLanguages = word.recognizedLanguages
            let wordBreak = word.recognizedBreak
            let wordCornerPoints = word.cornerPoints
            let wordFrame = word.frame
            for symbol in word.symbols {
                let symbolText = symbol.text
                let symbolConfidence = symbol.confidence
                let symbolRecognizedLanguages = symbol.recognizedLanguages
                let symbolBreak = symbol.recognizedBreak
                let symbolCornerPoints = symbol.cornerPoints
                let symbolFrame = symbol.frame
            }
        }
    }
}

Objective-C

NSString *resultText = result.text;
for (FIRVisionDocumentTextBlock *block in result.blocks) {
  NSString *blockText = block.text;
  NSNumber *blockConfidence = block.confidence;
  NSArray<FIRVisionTextRecognizedLanguage *> *blockRecognizedLanguages = block.recognizedLanguages;
  FIRVisionTextRecognizedBreak *blockBreak = block.recognizedBreak;
  CGRect blockFrame = block.frame;
  for (FIRVisionDocumentTextParagraph *paragraph in block.paragraphs) {
    NSString *paragraphText = paragraph.text;
    NSNumber *paragraphConfidence = paragraph.confidence;
    NSArray<FIRVisionTextRecognizedLanguage *> *paragraphRecognizedLanguages = paragraph.recognizedLanguages;
    FIRVisionTextRecognizedBreak *paragraphBreak = paragraph.recognizedBreak;
    CGRect paragraphFrame = paragraph.frame;
    for (FIRVisionDocumentTextWord *word in paragraph.words) {
      NSString *wordText = word.text;
      NSNumber *wordConfidence = word.confidence;
      NSArray<FIRVisionTextRecognizedLanguage *> *wordRecognizedLanguages = word.recognizedLanguages;
      FIRVisionTextRecognizedBreak *wordBreak = word.recognizedBreak;
      CGRect wordFrame = word.frame;
      for (FIRVisionDocumentTextSymbol *symbol in word.symbols) {
        NSString *symbolText = symbol.text;
        NSNumber *symbolConfidence = symbol.confidence;
        NSArray<FIRVisionTextRecognizedLanguage *> *symbolRecognizedLanguages = symbol.recognizedLanguages;
        FIRVisionTextRecognizedBreak *symbolBreak = symbol.recognizedBreak;
        CGRect symbolFrame = symbol.frame;
      }
    }
  }
}

後續步驟