利用机器学习套件,您可以使用设备端模型或云端模型来为图片中识别出的对象加标签。如需了解每种方法的优势,请参阅概览。
准备工作
- 如果您尚未将 Firebase 添加到自己的应用中,请按照入门指南中的步骤执行此操作。
- 在 Podfile 中添加机器学习套件库:
安装或更新项目的 Pod 之后,请务必使用 Xcode 项目的pod 'Firebase/MLVision', '6.25.0'
# If using the on-device API: pod 'Firebase/MLVisionLabelModel', '6.25.0'
.xcworkspace
来打开项目。 - 在您的应用中导入 Firebase:
Swift
import Firebase
Objective-C
@import Firebase;
-
如果您想使用云端模型,但尚未为项目启用基于 Cloud 的 API,此时请执行以下操作来启用该 API:
- 打开 Firebase 控制台的机器学习套件 API 页面。
-
如果您尚未将项目升级到 Blaze 定价方案,请点击升级以执行此操作。(只有在您的项目未采用 Blaze 方案时,系统才会提示您进行升级。)
只有 Blaze 级项目才能使用基于 Cloud 的 API。
- 如果尚未启用基于 Cloud 的 API,请点击启用基于 Cloud 的 API。
如果您只想使用设备端模型,可以跳过此步骤。
现在,您就可以使用设备端模型或云端模型为图片加标签了。
1. 准备输入图片
使用 UIImage
或 CMSampleBufferRef
创建一个 VisionImage
对象。
如需使用 UIImage
,请按以下步骤操作:
- 在必要时旋转图片,以使其
imageOrientation
属性为.up
。 - 使用方向正确的
UIImage
创建一个VisionImage
对象。不要指定任何旋转方式元数据,必须使用默认值.topLeft
。Swift
let image = VisionImage(image: uiImage)
Objective-C
FIRVisionImage *image = [[FIRVisionImage alloc] initWithImage:uiImage];
如需使用 CMSampleBufferRef
,请按以下步骤操作:
-
创建一个
VisionImageMetadata
对象,用其指定CMSampleBufferRef
缓冲区中所含图片数据的方向。如需获取图片方向,请运行以下代码:
Swift
func imageOrientation( deviceOrientation: UIDeviceOrientation, cameraPosition: AVCaptureDevice.Position ) -> VisionDetectorImageOrientation { switch deviceOrientation { case .portrait: return cameraPosition == .front ? .leftTop : .rightTop case .landscapeLeft: return cameraPosition == .front ? .bottomLeft : .topLeft case .portraitUpsideDown: return cameraPosition == .front ? .rightBottom : .leftBottom case .landscapeRight: return cameraPosition == .front ? .topRight : .bottomRight case .faceDown, .faceUp, .unknown: return .leftTop } }
Objective-C
- (FIRVisionDetectorImageOrientation) imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation cameraPosition:(AVCaptureDevicePosition)cameraPosition { switch (deviceOrientation) { case UIDeviceOrientationPortrait: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationLeftTop; } else { return FIRVisionDetectorImageOrientationRightTop; } case UIDeviceOrientationLandscapeLeft: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationBottomLeft; } else { return FIRVisionDetectorImageOrientationTopLeft; } case UIDeviceOrientationPortraitUpsideDown: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationRightBottom; } else { return FIRVisionDetectorImageOrientationLeftBottom; } case UIDeviceOrientationLandscapeRight: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationTopRight; } else { return FIRVisionDetectorImageOrientationBottomRight; } default: return FIRVisionDetectorImageOrientationTopLeft; } }
然后,创建元数据对象:
Swift
let cameraPosition = AVCaptureDevice.Position.back // Set to the capture device you used. let metadata = VisionImageMetadata() metadata.orientation = imageOrientation( deviceOrientation: UIDevice.current.orientation, cameraPosition: cameraPosition )
Objective-C
FIRVisionImageMetadata *metadata = [[FIRVisionImageMetadata alloc] init]; AVCaptureDevicePosition cameraPosition = AVCaptureDevicePositionBack; // Set to the capture device you used. metadata.orientation = [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation cameraPosition:cameraPosition];
- 使用
CMSampleBufferRef
对象和旋转方式元数据创建一个VisionImage
对象:Swift
let image = VisionImage(buffer: sampleBuffer) image.metadata = metadata
Objective-C
FIRVisionImage *image = [[FIRVisionImage alloc] initWithBuffer:sampleBuffer]; image.metadata = metadata;
2. 配置并运行图片标记器
如需给图片中的对象加标签,请将VisionImage
对象传递给 VisionImageLabeler
的 processImage()
方法。
首先,获取
VisionImageLabeler
的一个实例。如果您想要使用设备端图片标记器,请运行以下代码:
Swift
let labeler = Vision.vision().onDeviceImageLabeler() // Or, to set the minimum confidence required: // let options = VisionOnDeviceImageLabelerOptions() // options.confidenceThreshold = 0.7 // let labeler = Vision.vision().onDeviceImageLabeler(options: options)
Objective-C
FIRVisionImageLabeler *labeler = [[FIRVision vision] onDeviceImageLabeler]; // Or, to set the minimum confidence required: // FIRVisionOnDeviceImageLabelerOptions *options = // [[FIRVisionOnDeviceImageLabelerOptions alloc] init]; // options.confidenceThreshold = 0.7; // FIRVisionImageLabeler *labeler = // [[FIRVision vision] onDeviceImageLabelerWithOptions:options];
如果您想要使用云端图片标记器,请运行以下代码:
Swift
let labeler = Vision.vision().cloudImageLabeler() // Or, to set the minimum confidence required: // let options = VisionCloudImageLabelerOptions() // options.confidenceThreshold = 0.7 // let labeler = Vision.vision().cloudImageLabeler(options: options)
Objective-C
FIRVisionImageLabeler *labeler = [[FIRVision vision] cloudImageLabeler]; // Or, to set the minimum confidence required: // FIRVisionCloudImageLabelerOptions *options = // [[FIRVisionCloudImageLabelerOptions alloc] init]; // options.confidenceThreshold = 0.7; // FIRVisionImageLabeler *labeler = // [[FIRVision vision] cloudImageLabelerWithOptions:options];
然后,将图片传递给
processImage()
方法:Swift
labeler.process(image) { labels, error in guard error == nil, let labels = labels else { return } // Task succeeded. // ... }
Objective-C
[labeler processImage:image completion:^(NSArray<FIRVisionImageLabel *> *_Nullable labels, NSError *_Nullable error) { if (error != nil) { return; } // Task succeeded. // ... }];
3. 获取已加标签的对象的相关信息
如果图片标记成功,系统会向完成处理程序传递一组VisionImageLabel
对象。您可以从各个对象获取在该图片中识别出的特征的相关信息。
例如:
Swift
for label in labels {
let labelText = label.text
let entityId = label.entityID
let confidence = label.confidence
}
Objective-C
for (FIRVisionImageLabel *label in labels) {
NSString *labelText = label.text;
NSString *entityId = label.entityID;
NSNumber *confidence = label.confidence;
}
提高实时性能的相关提示
如果要在实时应用中为图片加标签,请遵循以下准则以实现最佳帧速率:
- 限制图片标记器的调用次数。如果在图片标记器运行时有新视频帧可用,请丢弃该帧。
- 如果要将图片标记器的输出作为图形叠加在输入图片上,请先从机器学习套件获取结果,然后在一个步骤中完成图片的呈现和叠加。采用这一方法,每个输入帧只需在显示表面呈现一次。如需查看示例,请参阅示例应用中的 previewOverlayView 和 FIRDetectionOverlayView 类。
后续步骤
- 在向生产环境中部署使用 Cloud API 的应用之前,您应该执行一些额外的步骤来防止未经授权的 API 访问并减轻这些访问造成的影响。