Resimlerdeki metinleri tanımak için ML Kit'i kullanabilirsiniz. ML Kit'te hem resimlerdeki metinleri (ör. sokak tabelasındaki metin) tanımaya uygun genel amaçlı bir API hem de belgelerdeki metinleri tanımaya yönelik optimize edilmiş bir API bulunur. Genel amaçlı API'de hem cihaz üzerinde hem de bulut tabanlı modeller bulunur. Belge metni tanıma yalnızca bulut tabanlı bir model olarak kullanılabilir. Bulut ve cihaz üzerindeki modellerin karşılaştırması için genel bakış bölümüne bakın.
Başlamadan önce
- Henüz yapmadıysanız Firebase'i Android projenize ekleyin.
- ML Kit Android kitaplıklarına ait bağımlılıkları modülünüzün (uygulama düzeyinde) Gradle dosyasına (genellikle
app/build.gradle
) ekleyin:apply plugin: 'com.android.application' apply plugin: 'com.google.gms.google-services' dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:24.0.3' }
-
İsteğe bağlı ancak önerilir: Cihaz üzerinde API'yi kullanıyorsanız uygulamanızı, Play Store'dan yüklendikten sonra makine öğrenimi modelini cihaza otomatik olarak indirecek şekilde yapılandırın.
Bunu yapmak için uygulamanızın
AndroidManifest.xml
dosyasına aşağıdaki bildirimi ekleyin: Yükleme sırasında model indirme özelliğini etkinleştirmezseniz model, cihaz üzerinde algılayıcıyı ilk kez çalıştırdığınızda indirilir. İndirme işlemi tamamlanmadan önce yaptığınız istekler sonuç vermez.<application ...> ... <meta-data android:name="com.google.firebase.ml.vision.DEPENDENCIES" android:value="ocr" /> <!-- To use multiple models: android:value="ocr,model2,model3" --> </application>
-
Cloud tabanlı modeli kullanmak istiyorsanız ve projeniz için Cloud tabanlı API'leri henüz etkinleştirmediyseniz şimdi etkinleştirin:
- Firebase konsolunun ML Kit API'leri sayfasını açın.
-
Projenizi henüz Blaze fiyatlandırma planına yükseltmediyseniz yükseltmek için Yükselt'i tıklayın. (Yalnızca projeniz Blaze planında değilse yükseltmeniz istenir.)
Yalnızca Blaze düzeyindeki projeler bulut tabanlı API'leri kullanabilir.
- Bulut tabanlı API'ler etkinleştirilmemişse Bulut tabanlı API'leri etkinleştir'i tıklayın.
Yalnızca cihaz üzerinde modeli kullanmak istiyorsanız bu adımı atlayabilirsiniz.
Artık resimlerdeki metinleri tanımaya başlayabilirsiniz.
Giriş resmi kuralları
-
ML Kit'in metni doğru şekilde tanıması için giriş resimlerinde yeterli piksel verisiyle temsil edilen metin bulunmalıdır. İdeal olarak, Latin metinlerde her karakter en az 16x16 piksel olmalıdır. Çince, Japonca ve Korece metinlerde (yalnızca bulut tabanlı API'ler tarafından desteklenir) her karakter 24x24 piksel olmalıdır. Genel olarak, tüm dillerde karakterlerin 24x24 pikselden büyük olması doğruluk açısından bir avantaj sağlamaz.
Bu nedenle, örneğin, resmin tam genişliğini kaplayan bir kartviziti taramak için 640x480 boyutundaki bir resim iyi sonuç verebilir. Mektup boyutunda kağıda yazdırılmış bir belgeyi taramak için 720x1280 piksel boyutunda bir görüntü gerekebilir.
-
Resmin net olmaması, metin tanıma doğruluğunu olumsuz etkileyebilir. Kabul edilebilir sonuçlar alamıyorsanız kullanıcıdan resmi yeniden çekmesini isteyin.
-
Metni gerçek zamanlı bir uygulamada tanıyorsanız giriş resimlerinin genel boyutlarını da göz önünde bulundurmanız gerekebilir. Daha küçük görüntüler daha hızlı işlenebilir. Bu nedenle, gecikmeyi azaltmak için görüntüleri daha düşük çözünürlüklerde çekin (yukarıdaki doğruluk şartlarını göz önünde bulundurarak) ve metnin, görüntünün mümkün olduğunca büyük bir bölümünü kapladığından emin olun. Ayrıca Gerçek zamanlı performansı artırmaya yönelik ipuçları başlıklı makaleye de göz atın.
Resimlerdeki metinleri tanıyın
Cihaz üzerinde veya bulut tabanlı bir model kullanarak resimdeki metni tanımak için metin tanıyıcıyı aşağıda açıklandığı şekilde çalıştırın.
1. Metin tanıyıcıyı çalıştırma
Resimdeki metni tanımak içinFirebaseVisionImage
nesnesi oluşturun. Bu nesneyi Bitmap
, media.Image
, ByteBuffer
, bayt dizisinden veya cihazdaki bir dosyadan oluşturabilirsiniz. Ardından, FirebaseVisionImage
nesnesini FirebaseVisionTextRecognizer
'nin processImage
yöntemine iletin.
Resminizden
FirebaseVisionImage
nesnesi oluşturun.-
Bir
media.Image
nesnesindenFirebaseVisionImage
nesnesi oluşturmak için (ör. bir cihazın kamerasından görüntü yakalarken)media.Image
nesnesini ve görüntünün dönüşünüFirebaseVisionImage.fromMediaImage()
'ye iletin.CameraX kitaplığını kullanıyorsanız
OnImageCapturedListener
veImageAnalysis.Analyzer
sınıfları sizin için döndürme değerini hesaplar. Bu nedenle, döndürmeyiFirebaseVisionImage.fromMediaImage()
işlevini çağırmadan önce ML Kit'inROTATION_
sabitlerinden birine dönüştürmeniz yeterlidir:Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
Resmin dönüşünü sağlayan bir kamera kitaplığı kullanmıyorsanız, cihazın dönüşünden ve cihazdaki kamera sensörünün yönünden hesaplayabilirsiniz:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Ardından,
media.Image
nesnesini ve dönüş değeriniFirebaseVisionImage.fromMediaImage()
'ye iletin:Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- Dosya URI'sinden
FirebaseVisionImage
nesnesi oluşturmak için uygulama bağlamını ve dosya URI'siniFirebaseVisionImage.fromFilePath()
'ye iletin. Bu, kullanıcıdan galeri uygulamasından bir resim seçmesini istemek içinACTION_GET_CONTENT
amacını kullandığınızda yararlıdır.Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
FirebaseVisionImage
nesnesi oluşturmak için öncelikleByteBuffer
veya bayt dizisindenmedia.Image
girişi için yukarıda açıklandığı şekilde görüntü döndürme işlemini hesaplayın.Ardından, resmin yüksekliğini, genişliğini, renk kodlama biçimini ve dönüşünü içeren bir
FirebaseVisionImageMetadata
nesnesi oluşturun:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Bir
FirebaseVisionImage
nesnesi oluşturmak için arabelleği veya diziyi ve meta veri nesnesini kullanın:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
FirebaseVisionImage
nesnesindenBitmap
nesnesi oluşturmak için:Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
nesnesiyle gösterilen resim dik olmalı ve ek döndürme işlemi gerektirmemelidir.
-
FirebaseVisionTextRecognizer
örneği alın.Cihaz üzerinde modeli kullanmak için:
Java
FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance() .getOnDeviceTextRecognizer();
Kotlin
val detector = FirebaseVision.getInstance() .onDeviceTextRecognizer
Bulut tabanlı modeli kullanmak için:
Java
FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance() .getCloudTextRecognizer(); // Or, to change the default settings: // FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance() // .getCloudTextRecognizer(options);
// Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages FirebaseVisionCloudTextRecognizerOptions options = new FirebaseVisionCloudTextRecognizerOptions.Builder() .setLanguageHints(Arrays.asList("en", "hi")) .build();
Kotlin
val detector = FirebaseVision.getInstance().cloudTextRecognizer // Or, to change the default settings: // val detector = FirebaseVision.getInstance().getCloudTextRecognizer(options)
// Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages val options = FirebaseVisionCloudTextRecognizerOptions.Builder() .setLanguageHints(listOf("en", "hi")) .build()
Son olarak, görüntüyü
processImage
yöntemine iletin:Java
Task<FirebaseVisionText> result = detector.processImage(image) .addOnSuccessListener(new OnSuccessListener<FirebaseVisionText>() { @Override public void onSuccess(FirebaseVisionText firebaseVisionText) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Kotlin
val result = detector.processImage(image) .addOnSuccessListener { firebaseVisionText -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
2. Tanınan metin bloklarından metin çıkarma
Metin tanıma işlemi başarılı olursa başarı işleyicisine birFirebaseVisionText
nesnesi iletilir. FirebaseVisionText
nesnesi, resimde tanınan metnin tamamını ve sıfır veya daha fazla TextBlock
nesnesini içerir.
Her TextBlock
, sıfır veya daha fazla Line
nesnesi içeren dikdörtgen bir metin bloğunu temsil eder. Her Line
nesnesi, kelimeleri ve kelime benzeri öğeleri (tarihler, sayılar vb.) temsil eden sıfır veya daha fazla Element
nesnesi içerir.
Her TextBlock
, Line
ve Element
nesnesi için bölgede tanınan metni ve bölgenin sınırlayıcı koordinatlarını alabilirsiniz.
Örneğin:
Java
String resultText = result.getText(); for (FirebaseVisionText.TextBlock block: result.getTextBlocks()) { String blockText = block.getText(); Float blockConfidence = block.getConfidence(); List<RecognizedLanguage> blockLanguages = block.getRecognizedLanguages(); Point[] blockCornerPoints = block.getCornerPoints(); Rect blockFrame = block.getBoundingBox(); for (FirebaseVisionText.Line line: block.getLines()) { String lineText = line.getText(); Float lineConfidence = line.getConfidence(); List<RecognizedLanguage> lineLanguages = line.getRecognizedLanguages(); Point[] lineCornerPoints = line.getCornerPoints(); Rect lineFrame = line.getBoundingBox(); for (FirebaseVisionText.Element element: line.getElements()) { String elementText = element.getText(); Float elementConfidence = element.getConfidence(); List<RecognizedLanguage> elementLanguages = element.getRecognizedLanguages(); Point[] elementCornerPoints = element.getCornerPoints(); Rect elementFrame = element.getBoundingBox(); } } }
Kotlin
val resultText = result.text for (block in result.textBlocks) { val blockText = block.text val blockConfidence = block.confidence val blockLanguages = block.recognizedLanguages val blockCornerPoints = block.cornerPoints val blockFrame = block.boundingBox for (line in block.lines) { val lineText = line.text val lineConfidence = line.confidence val lineLanguages = line.recognizedLanguages val lineCornerPoints = line.cornerPoints val lineFrame = line.boundingBox for (element in line.elements) { val elementText = element.text val elementConfidence = element.confidence val elementLanguages = element.recognizedLanguages val elementCornerPoints = element.cornerPoints val elementFrame = element.boundingBox } } }
Anlık performansı artırmaya yönelik ipuçları
Cihaz üzerinde modeli kullanarak gerçek zamanlı bir uygulamada metni tanımak istiyorsanız en iyi kare hızlarını elde etmek için aşağıdaki yönergeleri uygulayın:
- Metin tanıyıcıya yapılan çağrıları sınırlayın. Metin tanıma aracı çalışırken yeni bir video karesi kullanılabilir hale gelirse kareyi bırakın.
- Metin tanıyıcının çıkışını, giriş resmine grafik yerleştirmek için kullanıyorsanız önce ML Kit'ten sonucu alın, ardından resmi tek adımda oluşturup yerleştirin. Bunu yaptığınızda, her giriş çerçevesi için yalnızca bir kez görüntüleme yüzeyine işleme yaparsınız.
-
Camera2 API'yi kullanıyorsanız
ImageFormat.YUV_420_888
biçiminde resim çekin.Eski Camera API'yi kullanıyorsanız görüntüleri
ImageFormat.NV21
biçiminde çekin. - Görüntüleri daha düşük çözünürlükte çekmeyi deneyin. Ancak bu API'nin resim boyutu koşullarını da göz önünde bulundurun.
Sonraki adımlar
- Cloud API kullanan bir uygulamayı üretime dağıtmadan önce yetkisiz API erişiminin etkisini önlemek ve azaltmak için bazı ek adımlar atmanız gerekir.
Belge resimlerindeki metinleri tanıma
Bir belgedeki metni tanımak için bulut tabanlı belge metni tanıyıcıyı aşağıda açıklandığı şekilde yapılandırın ve çalıştırın.
Aşağıda açıklanan belge metni tanıma API'si, belge resimleriyle çalışmayı kolaylaştırmak için tasarlanmış bir arayüz sağlar. Ancak FirebaseVisionTextRecognizer
API'nin sağladığı arayüzü tercih ederseniz bulut metin tanıyıcıyı yoğun metin modelini kullanacak şekilde yapılandırarak belgeleri taramak için bu arayüzü kullanabilirsiniz.
Belge metni tanıma API'sini kullanmak için:
1. Metin tanıyıcıyı çalıştırma
Resimdeki metni tanımak içinFirebaseVisionImage
, Bitmap
, media.Image
, ByteBuffer
, bayt dizisi veya cihazdaki bir dosyadan FirebaseVisionImage
nesnesi oluşturun.
Ardından, FirebaseVisionImage
nesnesini FirebaseVisionDocumentTextRecognizer
'nin processImage
yöntemine iletin.
Resminizden
FirebaseVisionImage
nesnesi oluşturun.-
Bir
media.Image
nesnesindenFirebaseVisionImage
nesnesi oluşturmak için (ör. bir cihazın kamerasından görüntü yakalarken)media.Image
nesnesini ve görüntünün dönüşünüFirebaseVisionImage.fromMediaImage()
'ye iletin.CameraX kitaplığını kullanıyorsanız
OnImageCapturedListener
veImageAnalysis.Analyzer
sınıfları sizin için döndürme değerini hesaplar. Bu nedenle, döndürmeyiFirebaseVisionImage.fromMediaImage()
işlevini çağırmadan önce ML Kit'inROTATION_
sabitlerinden birine dönüştürmeniz yeterlidir:Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
Resmin dönüşünü sağlayan bir kamera kitaplığı kullanmıyorsanız, cihazın dönüşünden ve cihazdaki kamera sensörünün yönünden hesaplayabilirsiniz:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Ardından,
media.Image
nesnesini ve dönüş değeriniFirebaseVisionImage.fromMediaImage()
'ye iletin:Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- Dosya URI'sinden
FirebaseVisionImage
nesnesi oluşturmak için uygulama bağlamını ve dosya URI'siniFirebaseVisionImage.fromFilePath()
'ye iletin. Bu, kullanıcıdan galeri uygulamasından bir resim seçmesini istemek içinACTION_GET_CONTENT
amacını kullandığınızda yararlıdır.Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
FirebaseVisionImage
nesnesi oluşturmak için öncelikleByteBuffer
veya bayt dizisindenmedia.Image
girişi için yukarıda açıklandığı şekilde görüntü döndürme işlemini hesaplayın.Ardından, resmin yüksekliğini, genişliğini, renk kodlama biçimini ve dönüşünü içeren bir
FirebaseVisionImageMetadata
nesnesi oluşturun:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Bir
FirebaseVisionImage
nesnesi oluşturmak için arabelleği veya diziyi ve meta veri nesnesini kullanın:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
FirebaseVisionImage
nesnesindenBitmap
nesnesi oluşturmak için:Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
nesnesiyle gösterilen resim dik olmalı ve ek döndürme işlemi gerektirmemelidir.
-
FirebaseVisionDocumentTextRecognizer
örneğini alma:Java
FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance() .getCloudDocumentTextRecognizer();
// Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages FirebaseVisionCloudDocumentRecognizerOptions options = new FirebaseVisionCloudDocumentRecognizerOptions.Builder() .setLanguageHints(Arrays.asList("en", "hi")) .build(); FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance() .getCloudDocumentTextRecognizer(options);
Kotlin
val detector = FirebaseVision.getInstance() .cloudDocumentTextRecognizer
// Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages val options = FirebaseVisionCloudDocumentRecognizerOptions.Builder() .setLanguageHints(listOf("en", "hi")) .build() val detector = FirebaseVision.getInstance() .getCloudDocumentTextRecognizer(options)
Son olarak, görüntüyü
processImage
yöntemine iletin:Java
detector.processImage(myImage) .addOnSuccessListener(new OnSuccessListener<FirebaseVisionDocumentText>() { @Override public void onSuccess(FirebaseVisionDocumentText result) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Kotlin
detector.processImage(myImage) .addOnSuccessListener { firebaseVisionDocumentText -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
2. Tanınan metin bloklarından metin çıkarma
Metin tanıma işlemi başarılı olursa FirebaseVisionDocumentText
nesnesi döndürülür. Bir FirebaseVisionDocumentText
nesnesi, resimde tanınan tam metni ve tanınan belgenin yapısını yansıtan bir nesne hiyerarşisini içerir:
FirebaseVisionDocumentText.Block
FirebaseVisionDocumentText.Paragraph
FirebaseVisionDocumentText.Word
FirebaseVisionDocumentText.Symbol
Her Block
, Paragraph
, Word
ve Symbol
nesnesi için bölgede tanınan metni ve bölgenin sınırlama koordinatlarını alabilirsiniz.
Örneğin:
Java
String resultText = result.getText(); for (FirebaseVisionDocumentText.Block block: result.getBlocks()) { String blockText = block.getText(); Float blockConfidence = block.getConfidence(); List<RecognizedLanguage> blockRecognizedLanguages = block.getRecognizedLanguages(); Rect blockFrame = block.getBoundingBox(); for (FirebaseVisionDocumentText.Paragraph paragraph: block.getParagraphs()) { String paragraphText = paragraph.getText(); Float paragraphConfidence = paragraph.getConfidence(); List<RecognizedLanguage> paragraphRecognizedLanguages = paragraph.getRecognizedLanguages(); Rect paragraphFrame = paragraph.getBoundingBox(); for (FirebaseVisionDocumentText.Word word: paragraph.getWords()) { String wordText = word.getText(); Float wordConfidence = word.getConfidence(); List<RecognizedLanguage> wordRecognizedLanguages = word.getRecognizedLanguages(); Rect wordFrame = word.getBoundingBox(); for (FirebaseVisionDocumentText.Symbol symbol: word.getSymbols()) { String symbolText = symbol.getText(); Float symbolConfidence = symbol.getConfidence(); List<RecognizedLanguage> symbolRecognizedLanguages = symbol.getRecognizedLanguages(); Rect symbolFrame = symbol.getBoundingBox(); } } } }
Kotlin
val resultText = result.text for (block in result.blocks) { val blockText = block.text val blockConfidence = block.confidence val blockRecognizedLanguages = block.recognizedLanguages val blockFrame = block.boundingBox for (paragraph in block.paragraphs) { val paragraphText = paragraph.text val paragraphConfidence = paragraph.confidence val paragraphRecognizedLanguages = paragraph.recognizedLanguages val paragraphFrame = paragraph.boundingBox for (word in paragraph.words) { val wordText = word.text val wordConfidence = word.confidence val wordRecognizedLanguages = word.recognizedLanguages val wordFrame = word.boundingBox for (symbol in word.symbols) { val symbolText = symbol.text val symbolConfidence = symbol.confidence val symbolRecognizedLanguages = symbol.recognizedLanguages val symbolFrame = symbol.boundingBox } } } }
Sonraki adımlar
- Cloud API kullanan bir uygulamayı üretime dağıtmadan önce yetkisiz API erişiminin etkisini önlemek ve azaltmak için bazı ek adımlar atmanız gerekir.