Распознавайте текст на изображениях с помощью ML Kit на Android

Вы можете использовать ML Kit для распознавания текста на изображениях. ML Kit предлагает как универсальный API, подходящий для распознавания текста на изображениях, например, текста уличных вывесок, так и API, оптимизированный для распознавания текста документов. Универсальный API поддерживает как локальную, так и облачную модели. Распознавание текста документов доступно только в облачной модели. Сравнение облачной и локальной моделей см. в обзоре .

Прежде чем начать

  1. Если вы еще этого не сделали, добавьте Firebase в свой Android-проект .
  2. Добавьте зависимости для библиотек ML Kit Android в файл Gradle вашего модуля (уровня приложения) (обычно app/build.gradle ):
    apply plugin: 'com.android.application'
    apply plugin: 'com.google.gms.google-services'
    
    dependencies {
      // ...
    
      implementation 'com.google.firebase:firebase-ml-vision:24.0.3'
    }
  3. Необязательно, но рекомендуется : если вы используете API на устройстве, настройте приложение на автоматическую загрузку модели машинного обучения на устройство после установки приложения из Play Store.

    Для этого добавьте следующее объявление в файл AndroidManifest.xml вашего приложения:

    <application ...>
      ...
      <meta-data
          android:name="com.google.firebase.ml.vision.DEPENDENCIES"
          android:value="ocr" />
      <!-- To use multiple models: android:value="ocr,model2,model3" -->
    </application>
    Если вы не включите загрузку моделей во время установки, модель будет загружена при первом запуске детектора на устройстве. Запросы, сделанные до завершения загрузки, не дадут результатов.
  4. Если вы хотите использовать облачную модель и еще не включили облачные API для своего проекта, сделайте это сейчас:

    1. Откройте страницу API ML Kit в консоли Firebase .
    2. Если вы ещё не перевели свой проект на тарифный план Blaze, нажмите «Обновить» , чтобы сделать это. (Вам будет предложено обновиться только в том случае, если ваш проект не входит в тарифный план Blaze.)

      Только проекты уровня Blaze могут использовать облачные API.

    3. Если облачные API еще не включены, нажмите Включить облачные API .

    Если вы хотите использовать только модель на устройстве, вы можете пропустить этот шаг.

Теперь вы готовы начать распознавать текст на изображениях.

Правила ввода изображений

  • Для точного распознавания текста с помощью ML Kit входные изображения должны содержать текст, представленный достаточным количеством пикселей. В идеале для латинского текста каждый символ должен иметь размер не менее 16x16 пикселей. Для китайского, японского и корейского текста (поддерживаемых только облачными API) каждый символ должен иметь размер 24x24 пикселя. Для всех языков символы размером более 24x24 пикселя, как правило, не повышают точность распознавания.

    Например, изображение размером 640x480 пикселей может подойти для сканирования визитной карточки, занимающей всю её ширину. Для сканирования документа, напечатанного на бумаге формата Letter, может потребоваться изображение размером 720x1280 пикселей.

  • Плохая фокусировка изображения может снизить точность распознавания текста. Если результаты неудовлетворительны, попросите пользователя повторно сделать снимок.

  • Если вы распознаёте текст в приложении реального времени, вам также стоит учитывать общие размеры входных изображений. Изображения меньшего размера обрабатываются быстрее, поэтому для уменьшения задержки снимайте изображения с более низким разрешением (с учётом вышеуказанных требований к точности) и следите за тем, чтобы текст занимал как можно большую часть изображения. См. также раздел «Советы по повышению производительности в реальном времени» .


Распознавать текст на изображениях

Чтобы распознать текст на изображении с помощью модели на устройстве или в облаке, запустите распознаватель текста, как описано ниже.

1. Запустите распознаватель текста.

Чтобы распознать текст на изображении, создайте объект FirebaseVisionImage из Bitmap , media.Image , ByteBuffer , байтового массива или файла на устройстве. Затем передайте объект FirebaseVisionImage методу processImage объекта FirebaseVisionTextRecognizer .

  1. Создайте объект FirebaseVisionImage из вашего изображения.

    • Чтобы создать объект FirebaseVisionImage из объекта media.Image , например, при захвате изображения с камеры устройства, передайте объект media.Image и поворот изображения в FirebaseVisionImage.fromMediaImage() .

      Если вы используете библиотеку CameraX , классы OnImageCapturedListener и ImageAnalysis.Analyzer вычисляют значение поворота автоматически, поэтому вам просто нужно преобразовать поворот в одну из констант ROTATION_ ML Kit перед вызовом FirebaseVisionImage.fromMediaImage() :

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Kit Vision API
              // ...
          }
      }

      Kotlin

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Kit Vision API
                  // ...
              }
          }
      }

      Если вы не используете библиотеку камеры, которая вычисляет угол поворота изображения, вы можете рассчитать его на основе угла поворота устройства и ориентации датчика камеры в устройстве:

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Kotlin

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      Затем передайте объект media.Image и значение поворота в FirebaseVisionImage.fromMediaImage() :

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

      Kotlin

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
    • Чтобы создать объект FirebaseVisionImage из URI файла, передайте контекст приложения и URI файла в FirebaseVisionImage.fromFilePath() . Это полезно при использовании намерения ACTION_GET_CONTENT , чтобы предложить пользователю выбрать изображение из приложения-галереи.

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }

      Kotlin

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }
    • Чтобы создать объект FirebaseVisionImage из ByteBuffer или массива байтов, сначала рассчитайте поворот изображения, как описано выше для входных данных media.Image .

      Затем создайте объект FirebaseVisionImageMetadata , содержащий высоту, ширину, формат кодировки цвета и поворот изображения:

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Kotlin

      val metadata = FirebaseVisionImageMetadata.Builder()
              .setWidth(480) // 480x360 is typically sufficient for
              .setHeight(360) // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build()

      Используйте буфер или массив и объект метаданных для создания объекта FirebaseVisionImage :

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

      Kotlin

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
    • Чтобы создать объект FirebaseVisionImage из объекта Bitmap :

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

      Kotlin

      val image = FirebaseVisionImage.fromBitmap(bitmap)
      Изображение, представленное объектом Bitmap , должно быть вертикальным, без необходимости дополнительного поворота.

  2. Получите экземпляр FirebaseVisionTextRecognizer .

    Чтобы использовать модель на устройстве:

    Java

    FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance()
            .getOnDeviceTextRecognizer();

    Kotlin

    val detector = FirebaseVision.getInstance()
            .onDeviceTextRecognizer

    Чтобы использовать облачную модель:

    Java

    FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance()
            .getCloudTextRecognizer();
    // Or, to change the default settings:
    //   FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance()
    //          .getCloudTextRecognizer(options);
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FirebaseVisionCloudTextRecognizerOptions options = new FirebaseVisionCloudTextRecognizerOptions.Builder()
            .setLanguageHints(Arrays.asList("en", "hi"))
            .build();

    Kotlin

    val detector = FirebaseVision.getInstance().cloudTextRecognizer
    // Or, to change the default settings:
    // val detector = FirebaseVision.getInstance().getCloudTextRecognizer(options)
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    val options = FirebaseVisionCloudTextRecognizerOptions.Builder()
            .setLanguageHints(listOf("en", "hi"))
            .build()
  3. Наконец, передайте изображение методу processImage :

    Java

    Task<FirebaseVisionText> result =
            detector.processImage(image)
                    .addOnSuccessListener(new OnSuccessListener<FirebaseVisionText>() {
                        @Override
                        public void onSuccess(FirebaseVisionText firebaseVisionText) {
                            // Task completed successfully
                            // ...
                        }
                    })
                    .addOnFailureListener(
                            new OnFailureListener() {
                                @Override
                                public void onFailure(@NonNull Exception e) {
                                    // Task failed with an exception
                                    // ...
                                }
                            });

    Kotlin

    val result = detector.processImage(image)
            .addOnSuccessListener { firebaseVisionText ->
                // Task completed successfully
                // ...
            }
            .addOnFailureListener { e ->
                // Task failed with an exception
                // ...
            }

2. Извлечь текст из блоков распознанного текста

Если операция распознавания текста прошла успешно, прослушивателю событий будет передан объект FirebaseVisionText . Объект FirebaseVisionText содержит полный текст, распознанный на изображении, и ноль или более объектов TextBlock .

Каждый TextBlock представляет собой прямоугольный блок текста, содержащий ноль или более объектов Line . Каждый объект Line содержит ноль или более объектов Element , которые представляют слова и словесные сущности (даты, числа и т. д.).

Для каждого объекта TextBlock , Line и Element вы можете получить текст, распознанный в области, и граничные координаты области.

Например:

Java

String resultText = result.getText();
for (FirebaseVisionText.TextBlock block: result.getTextBlocks()) {
    String blockText = block.getText();
    Float blockConfidence = block.getConfidence();
    List<RecognizedLanguage> blockLanguages = block.getRecognizedLanguages();
    Point[] blockCornerPoints = block.getCornerPoints();
    Rect blockFrame = block.getBoundingBox();
    for (FirebaseVisionText.Line line: block.getLines()) {
        String lineText = line.getText();
        Float lineConfidence = line.getConfidence();
        List<RecognizedLanguage> lineLanguages = line.getRecognizedLanguages();
        Point[] lineCornerPoints = line.getCornerPoints();
        Rect lineFrame = line.getBoundingBox();
        for (FirebaseVisionText.Element element: line.getElements()) {
            String elementText = element.getText();
            Float elementConfidence = element.getConfidence();
            List<RecognizedLanguage> elementLanguages = element.getRecognizedLanguages();
            Point[] elementCornerPoints = element.getCornerPoints();
            Rect elementFrame = element.getBoundingBox();
        }
    }
}

Kotlin

val resultText = result.text
for (block in result.textBlocks) {
    val blockText = block.text
    val blockConfidence = block.confidence
    val blockLanguages = block.recognizedLanguages
    val blockCornerPoints = block.cornerPoints
    val blockFrame = block.boundingBox
    for (line in block.lines) {
        val lineText = line.text
        val lineConfidence = line.confidence
        val lineLanguages = line.recognizedLanguages
        val lineCornerPoints = line.cornerPoints
        val lineFrame = line.boundingBox
        for (element in line.elements) {
            val elementText = element.text
            val elementConfidence = element.confidence
            val elementLanguages = element.recognizedLanguages
            val elementCornerPoints = element.cornerPoints
            val elementFrame = element.boundingBox
        }
    }
}

Советы по улучшению производительности в реальном времени

Если вы хотите использовать модель на устройстве для распознавания текста в приложении реального времени, следуйте этим рекомендациям, чтобы добиться наилучшей частоты кадров:

  • Устраните вызовы распознавателя текста. Если во время работы распознавателя текста появляется новый видеокадр, отбросьте его.
  • Если вы используете выходные данные распознавателя текста для наложения графики на входное изображение, сначала получите результат из ML Kit, а затем визуализируйте изображение и наложение за один шаг. Таким образом, визуализация на поверхности дисплея выполняется только один раз для каждого входного кадра.
  • Если вы используете API Camera2, снимайте изображения в формате ImageFormat.YUV_420_888 .

    Если вы используете старый API камеры, снимайте изображения в формате ImageFormat.NV21 .

  • Рассмотрите возможность захвата изображений в более низком разрешении. Однако учитывайте требования API к размерам изображений.

Следующие шаги


Распознавать текст на изображениях документов

Чтобы распознать текст документа, настройте и запустите облачный распознаватель текста документа, как описано ниже.

API распознавания текста документов, описанный ниже, предоставляет интерфейс, предназначенный для более удобной работы с изображениями документов. Однако, если вы предпочитаете интерфейс, предоставляемый API FirebaseVisionTextRecognizer , вы можете использовать его для сканирования документов, настроив облачный распознаватель текста на использование модели плотного текста .

Чтобы использовать API распознавания текста документа:

1. Запустите распознаватель текста.

Чтобы распознать текст на изображении, создайте объект FirebaseVisionImage из Bitmap , media.Image , ByteBuffer , байтового массива или файла на устройстве. Затем передайте объект FirebaseVisionImage методу processImage объекта FirebaseVisionDocumentTextRecognizer .

  1. Создайте объект FirebaseVisionImage из вашего изображения.

    • Чтобы создать объект FirebaseVisionImage из объекта media.Image , например, при захвате изображения с камеры устройства, передайте объект media.Image и поворот изображения в FirebaseVisionImage.fromMediaImage() .

      Если вы используете библиотеку CameraX , классы OnImageCapturedListener и ImageAnalysis.Analyzer вычисляют значение поворота автоматически, поэтому вам просто нужно преобразовать поворот в одну из констант ROTATION_ ML Kit перед вызовом FirebaseVisionImage.fromMediaImage() :

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Kit Vision API
              // ...
          }
      }

      Kotlin

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Kit Vision API
                  // ...
              }
          }
      }

      Если вы не используете библиотеку камеры, которая вычисляет угол поворота изображения, вы можете рассчитать его на основе угла поворота устройства и ориентации датчика камеры в устройстве:

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Kotlin

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      Затем передайте объект media.Image и значение поворота в FirebaseVisionImage.fromMediaImage() :

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

      Kotlin

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
    • Чтобы создать объект FirebaseVisionImage из URI файла, передайте контекст приложения и URI файла в FirebaseVisionImage.fromFilePath() . Это полезно при использовании намерения ACTION_GET_CONTENT , чтобы предложить пользователю выбрать изображение из приложения-галереи.

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }

      Kotlin

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }
    • Чтобы создать объект FirebaseVisionImage из ByteBuffer или массива байтов, сначала рассчитайте поворот изображения, как описано выше для входных данных media.Image .

      Затем создайте объект FirebaseVisionImageMetadata , содержащий высоту, ширину, формат кодировки цвета и поворот изображения:

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Kotlin

      val metadata = FirebaseVisionImageMetadata.Builder()
              .setWidth(480) // 480x360 is typically sufficient for
              .setHeight(360) // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build()

      Используйте буфер или массив и объект метаданных для создания объекта FirebaseVisionImage :

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

      Kotlin

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
    • Чтобы создать объект FirebaseVisionImage из объекта Bitmap :

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

      Kotlin

      val image = FirebaseVisionImage.fromBitmap(bitmap)
      Изображение, представленное объектом Bitmap , должно быть вертикальным, без необходимости дополнительного поворота.

  2. Получите экземпляр FirebaseVisionDocumentTextRecognizer :

    Java

    FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance()
            .getCloudDocumentTextRecognizer();
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FirebaseVisionCloudDocumentRecognizerOptions options =
            new FirebaseVisionCloudDocumentRecognizerOptions.Builder()
                    .setLanguageHints(Arrays.asList("en", "hi"))
                    .build();
    FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance()
            .getCloudDocumentTextRecognizer(options);

    Kotlin

    val detector = FirebaseVision.getInstance()
            .cloudDocumentTextRecognizer
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    val options = FirebaseVisionCloudDocumentRecognizerOptions.Builder()
            .setLanguageHints(listOf("en", "hi"))
            .build()
    val detector = FirebaseVision.getInstance()
            .getCloudDocumentTextRecognizer(options)

  3. Наконец, передайте изображение методу processImage :

    Java

    detector.processImage(myImage)
            .addOnSuccessListener(new OnSuccessListener<FirebaseVisionDocumentText>() {
                @Override
                public void onSuccess(FirebaseVisionDocumentText result) {
                    // Task completed successfully
                    // ...
                }
            })
            .addOnFailureListener(new OnFailureListener() {
                @Override
                public void onFailure(@NonNull Exception e) {
                    // Task failed with an exception
                    // ...
                }
            });

    Kotlin

    detector.processImage(myImage)
            .addOnSuccessListener { firebaseVisionDocumentText ->
                // Task completed successfully
                // ...
            }
            .addOnFailureListener { e ->
                // Task failed with an exception
                // ...
            }

2. Извлечь текст из блоков распознанного текста

Если операция распознавания текста выполнена успешно, возвращается объект FirebaseVisionDocumentText . Объект FirebaseVisionDocumentText содержит полный текст, распознанный на изображении, и иерархию объектов, отражающую структуру распознанного документа:

Для каждого объекта Block , Paragraph , Word и Symbol можно получить текст, распознанный в области, и ограничивающие координаты области.

Например:

Java

String resultText = result.getText();
for (FirebaseVisionDocumentText.Block block: result.getBlocks()) {
    String blockText = block.getText();
    Float blockConfidence = block.getConfidence();
    List<RecognizedLanguage> blockRecognizedLanguages = block.getRecognizedLanguages();
    Rect blockFrame = block.getBoundingBox();
    for (FirebaseVisionDocumentText.Paragraph paragraph: block.getParagraphs()) {
        String paragraphText = paragraph.getText();
        Float paragraphConfidence = paragraph.getConfidence();
        List<RecognizedLanguage> paragraphRecognizedLanguages = paragraph.getRecognizedLanguages();
        Rect paragraphFrame = paragraph.getBoundingBox();
        for (FirebaseVisionDocumentText.Word word: paragraph.getWords()) {
            String wordText = word.getText();
            Float wordConfidence = word.getConfidence();
            List<RecognizedLanguage> wordRecognizedLanguages = word.getRecognizedLanguages();
            Rect wordFrame = word.getBoundingBox();
            for (FirebaseVisionDocumentText.Symbol symbol: word.getSymbols()) {
                String symbolText = symbol.getText();
                Float symbolConfidence = symbol.getConfidence();
                List<RecognizedLanguage> symbolRecognizedLanguages = symbol.getRecognizedLanguages();
                Rect symbolFrame = symbol.getBoundingBox();
            }
        }
    }
}

Kotlin

val resultText = result.text
for (block in result.blocks) {
    val blockText = block.text
    val blockConfidence = block.confidence
    val blockRecognizedLanguages = block.recognizedLanguages
    val blockFrame = block.boundingBox
    for (paragraph in block.paragraphs) {
        val paragraphText = paragraph.text
        val paragraphConfidence = paragraph.confidence
        val paragraphRecognizedLanguages = paragraph.recognizedLanguages
        val paragraphFrame = paragraph.boundingBox
        for (word in paragraph.words) {
            val wordText = word.text
            val wordConfidence = word.confidence
            val wordRecognizedLanguages = word.recognizedLanguages
            val wordFrame = word.boundingBox
            for (symbol in word.symbols) {
                val symbolText = symbol.text
                val symbolConfidence = symbol.confidence
                val symbolRecognizedLanguages = symbol.recognizedLanguages
                val symbolFrame = symbol.boundingBox
            }
        }
    }
}

Следующие шаги