Vous pouvez utiliser ML Kit pour reconnaître des monuments connus dans une image.
Avant de commencer
- Si ce n'est pas encore fait, ajoutez Firebase à votre projet Android.
- Ajoutez les dépendances des bibliothèques Android ML Kit au fichier Gradle de votre module (au niveau de l'application) (généralement
app/build.gradle
):apply plugin: 'com.android.application' apply plugin: 'com.google.gms.google-services' dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:24.0.3' }
-
Si vous n'avez pas encore activé les API basées sur le cloud pour votre projet, faites-le maintenant:
- Ouvrez la page API ML Kit de la console Firebase.
-
Si vous n'avez pas encore migré votre projet vers un forfait Blaze, cliquez sur Mettre à niveau pour le faire. (Vous ne serez invité à effectuer la migration que si votre projet n'est pas associé au forfait Blaze.)
Seuls les projets de niveau Blaze peuvent utiliser les API basées sur le cloud.
- Si les API cloud ne sont pas déjà activées, cliquez sur Activer les API cloud.
Configurer le détecteur de repères
Par défaut, le détecteur Cloud utilise la version STABLE
du modèle et renvoie jusqu'à 10 résultats. Si vous souhaitez modifier l'un de ces paramètres, spécifiez-le avec un objet FirebaseVisionCloudDetectorOptions
.
Par exemple, pour modifier les deux paramètres par défaut, créez un objet FirebaseVisionCloudDetectorOptions
comme dans l'exemple suivant:
Java
FirebaseVisionCloudDetectorOptions options = new FirebaseVisionCloudDetectorOptions.Builder() .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL) .setMaxResults(15) .build();
Kotlin
val options = FirebaseVisionCloudDetectorOptions.Builder() .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL) .setMaxResults(15) .build()
Pour utiliser les paramètres par défaut, vous pouvez utiliser FirebaseVisionCloudDetectorOptions.DEFAULT
à l'étape suivante.
Exécuter le détecteur de points de repère
Pour reconnaître des repères dans une image, créez un objetFirebaseVisionImage
à partir d'un Bitmap
, media.Image
, ByteBuffer
, d'un tableau d'octets ou d'un fichier sur l'appareil. Transmettez ensuite l'objet FirebaseVisionImage
à la méthode detectInImage
de FirebaseVisionCloudLandmarkDetector
.
Créez un objet
FirebaseVisionImage
à partir de votre image.-
Pour créer un objet
FirebaseVisionImage
à partir d'un objetmedia.Image
, par exemple lorsque vous capturez une image à partir de l'appareil photo d'un appareil, transmettez l'objetmedia.Image
et la rotation de l'image àFirebaseVisionImage.fromMediaImage()
.Si vous utilisez la bibliothèque CameraX, les classes
OnImageCapturedListener
etImageAnalysis.Analyzer
calculent la valeur de rotation à votre place. Il vous suffit donc de convertir la rotation en l'une des constantesROTATION_
de ML Kit avant d'appelerFirebaseVisionImage.fromMediaImage()
:Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
Si vous n'utilisez pas de bibliothèque d'appareil photo qui vous indique la rotation de l'image, vous pouvez la calculer à partir de la rotation de l'appareil et de l'orientation du capteur de l'appareil photo dans l'appareil:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Transmettez ensuite l'objet
media.Image
et la valeur de rotation àFirebaseVisionImage.fromMediaImage()
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- Pour créer un objet
FirebaseVisionImage
à partir d'un URI de fichier, transmettez le contexte de l'application et l'URI de fichier àFirebaseVisionImage.fromFilePath()
. Cela est utile lorsque vous utilisez un intentACTION_GET_CONTENT
pour inviter l'utilisateur à sélectionner une image dans son application Galerie.Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- Pour créer un objet
FirebaseVisionImage
à partir d'unByteBuffer
ou d'un tableau d'octets, commencez par calculer la rotation de l'image comme décrit ci-dessus pour l'entréemedia.Image
.Créez ensuite un objet
FirebaseVisionImageMetadata
contenant la hauteur, la largeur, le format d'encodage des couleurs et la rotation de l'image:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Utilisez le tampon ou le tableau, ainsi que l'objet de métadonnées, pour créer un objet
FirebaseVisionImage
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
- Pour créer un objet
FirebaseVisionImage
à partir d'un objetBitmap
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
doit être à l'endroit, sans rotation supplémentaire requise.
-
Obtenez une instance de
FirebaseVisionCloudLandmarkDetector
:Java
FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance() .getVisionCloudLandmarkDetector(); // Or, to change the default settings: // FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance() // .getVisionCloudLandmarkDetector(options);
Kotlin
val detector = FirebaseVision.getInstance() .visionCloudLandmarkDetector // Or, to change the default settings: // val detector = FirebaseVision.getInstance() // .getVisionCloudLandmarkDetector(options)
Enfin, transmettez l'image à la méthode
detectInImage
:Java
Task<List<FirebaseVisionCloudLandmark>> result = detector.detectInImage(image) .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionCloudLandmark>>() { @Override public void onSuccess(List<FirebaseVisionCloudLandmark> firebaseVisionCloudLandmarks) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Kotlin
val result = detector.detectInImage(image) .addOnSuccessListener { firebaseVisionCloudLandmarks -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Obtenir des informations sur les repères reconnus
Si l'opération de reconnaissance de repère aboutit, une liste d'objetsFirebaseVisionCloudLandmark
est transmise à l'écouteur de succès. Chaque objet FirebaseVisionCloudLandmark
représente un repère reconnu dans l'image. Pour chaque point de repère, vous pouvez obtenir ses coordonnées de délimitation dans l'image d'entrée, son nom, sa latitude et sa longitude, son ID d'entité Knowledge Graph (le cas échéant) et le score de confiance de la correspondance. Exemple :
Java
for (FirebaseVisionCloudLandmark landmark: firebaseVisionCloudLandmarks) { Rect bounds = landmark.getBoundingBox(); String landmarkName = landmark.getLandmark(); String entityId = landmark.getEntityId(); float confidence = landmark.getConfidence(); // Multiple locations are possible, e.g., the location of the depicted // landmark and the location the picture was taken. for (FirebaseVisionLatLng loc: landmark.getLocations()) { double latitude = loc.getLatitude(); double longitude = loc.getLongitude(); } }
Kotlin
for (landmark in firebaseVisionCloudLandmarks) { val bounds = landmark.boundingBox val landmarkName = landmark.landmark val entityId = landmark.entityId val confidence = landmark.confidence // Multiple locations are possible, e.g., the location of the depicted // landmark and the location the picture was taken. for (loc in landmark.locations) { val latitude = loc.latitude val longitude = loc.longitude } }
Étapes suivantes
- Avant de déployer en production une application qui utilise une API Cloud, vous devez prendre des mesures supplémentaires pour empêcher et atténuer l'impact d'un accès non autorisé à l'API.