Gắn nhãn hình ảnh bằng mô hình được huấn luyện bằng AutoML trên Android

Sau khi bạn tự đào tạo bằng AutoML Vision Edge, bạn có thể sử dụng mô hình này trong ứng dụng để gắn nhãn hình ảnh.

Trước khi bắt đầu

  1. Nếu bạn chưa làm như vậy, thêm Firebase vào dự án Android của bạn.
  2. Thêm các phần phụ thuộc của thư viện Android cho Bộ công cụ học máy vào mô-đun của bạn Tệp Gradle (cấp ứng dụng) (thường là app/build.gradle):
    apply plugin: 'com.android.application'
    apply plugin: 'com.google.gms.google-services'
    
    dependencies {
      // ...
    
      implementation 'com.google.firebase:firebase-ml-vision:24.0.3'
      implementation 'com.google.firebase:firebase-ml-vision-automl:18.0.5'
    }

1. Tải mô hình

Bộ công cụ học máy sẽ chạy các mô hình do AutoML tạo trên thiết bị. Tuy nhiên, bạn có thể định cấu hình Bộ công cụ học máy để tải mô hình của bạn từ xa từ Firebase, bộ nhớ cục bộ hoặc cả hai.

Bằng cách lưu trữ mô hình trên Firebase, bạn có thể cập nhật mô hình mà không cần phát hành một phiên bản ứng dụng mới và bạn có thể sử dụng Remote ConfigA/B Testing để phân phát linh động các mô hình khác nhau cho các nhóm người dùng khác nhau.

Nếu bạn chỉ chọn cung cấp mô hình bằng cách lưu trữ mô hình đó bằng Firebase, chứ không phải hãy kết hợp ứng dụng đó với ứng dụng, bạn có thể giảm kích thước tải xuống ban đầu của ứng dụng. Mặc dù vậy, hãy lưu ý rằng nếu mô hình không được đóng gói với ứng dụng của bạn, bất kỳ sẽ không có sẵn chức năng liên quan đến mô hình cho đến khi ứng dụng của bạn tải xuống mô hình lần đầu tiên.

Bằng cách kết hợp mô hình với ứng dụng, bạn có thể đảm bảo các tính năng học máy của ứng dụng vẫn hoạt động khi không có mô hình lưu trữ trên Firebase.

Định cấu hình nguồn mô hình được lưu trữ trên Firebase

Để sử dụng mô hình được lưu trữ từ xa, hãy tạo đối tượng FirebaseAutoMLRemoteModel, chỉ định tên mà bạn đã chỉ định cho mô hình khi xuất bản:

Java

// Specify the name you assigned in the Firebase console.
FirebaseAutoMLRemoteModel remoteModel =
    new FirebaseAutoMLRemoteModel.Builder("your_remote_model").build();

Kotlin+KTX

// Specify the name you assigned in the Firebase console.
val remoteModel = FirebaseAutoMLRemoteModel.Builder("your_remote_model").build()

Sau đó, bắt đầu tác vụ tải mô hình xuống, chỉ định các điều kiện mà theo đó mà bạn muốn cho phép tải xuống. Nếu kiểu máy này không có trên thiết bị hoặc nếu là kiểu máy mới hơn phiên bản của mô hình sẵn có, tác vụ sẽ tải xuống không đồng bộ mô hình từ Firebase:

Java

FirebaseModelDownloadConditions conditions = new FirebaseModelDownloadConditions.Builder()
        .requireWifi()
        .build();
FirebaseModelManager.getInstance().download(remoteModel, conditions)
        .addOnCompleteListener(new OnCompleteListener<Void>() {
            @Override
            public void onComplete(@NonNull Task<Void> task) {
                // Success.
            }
        });

Kotlin+KTX

val conditions = FirebaseModelDownloadConditions.Builder()
    .requireWifi()
    .build()
FirebaseModelManager.getInstance().download(remoteModel, conditions)
    .addOnCompleteListener {
        // Success.
    }

Nhiều ứng dụng bắt đầu tác vụ tải xuống trong mã khởi chạy, nhưng bạn có thể làm như vậy bất cứ lúc nào trước khi cần sử dụng mô hình.

Định cấu hình nguồn mô hình cục bộ

Cách đóng gói mô hình với ứng dụng:

  1. Trích xuất mô hình và siêu dữ liệu của mô hình từ tệp lưu trữ zip mà bạn đã tải xuống trên bảng điều khiển của Firebase. Bạn nên dùng các tệp khi tải xuống chúng mà không sửa đổi (bao gồm tên tệp).
  2. Đưa mô hình và các tệp siêu dữ liệu của mô hình đó vào gói ứng dụng của bạn:

    1. Nếu bạn không có thư mục thành phần trong dự án, hãy tạo một thư mục bằng cách nhấp chuột phải vào thư mục app/, rồi nhấp vào Mới > Thư mục > Thư mục Thành phần.
    2. Tạo thư mục con trong thư mục thành phần để chứa mô hình tệp.
    3. Sao chép các tệp model.tflite, dict.txtmanifest.json vào thư mục con (cả ba tệp đều phải nằm trong cùng thư mục đó).
  3. Hãy thêm đoạn mã sau vào tệp build.gradle của ứng dụng để đảm bảo Gradle không nén tệp mô hình khi tạo ứng dụng:
    android {
        // ...
        aaptOptions {
            noCompress "tflite"
        }
    }
    
    Tệp mô hình sẽ có trong gói ứng dụng và được cung cấp cho Bộ công cụ học máy dưới dạng nội dung thô.
  4. Tạo một đối tượng FirebaseAutoMLLocalModel, chỉ định đường dẫn đến tệp kê khai mô hình tệp:

    Java

    FirebaseAutoMLLocalModel localModel = new FirebaseAutoMLLocalModel.Builder()
            .setAssetFilePath("manifest.json")
            .build();
    

    Kotlin+KTX

    val localModel = FirebaseAutoMLLocalModel.Builder()
            .setAssetFilePath("manifest.json")
            .build()
    

Tạo công cụ gắn nhãn hình ảnh từ mô hình của bạn

Sau khi bạn định cấu hình các nguồn mô hình, hãy tạo một FirebaseVisionImageLabeler khỏi một trong số chúng.

Nếu bạn chỉ có mô hình được gói cục bộ, chỉ cần tạo một công cụ gắn nhãn từ FirebaseAutoMLLocalModel đối tượng và định cấu hình ngưỡng điểm tin cậy mà bạn muốn yêu cầu (xem bài viết Đánh giá mô hình):

Java

FirebaseVisionImageLabeler labeler;
try {
    FirebaseVisionOnDeviceAutoMLImageLabelerOptions options =
            new FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel)
                    .setConfidenceThreshold(0.0f)  // Evaluate your model in the Firebase console
                                                   // to determine an appropriate value.
                    .build();
    labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options);
} catch (FirebaseMLException e) {
    // ...
}

Kotlin+KTX

val options = FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel)
    .setConfidenceThreshold(0)  // Evaluate your model in the Firebase console
                                // to determine an appropriate value.
    .build()
val labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options)

Nếu có mô hình được lưu trữ từ xa, bạn sẽ phải kiểm tra xem mô hình đó đã được tải xuống trước khi chạy nó. Bạn có thể kiểm tra trạng thái tải mô hình xuống bằng cách sử dụng phương thức isModelDownloaded() của trình quản lý mô hình.

Mặc dù bạn chỉ phải xác nhận điều này trước khi chạy nhãn, nếu bạn có cả mô hình được lưu trữ từ xa và mô hình được gói cục bộ, ý nghĩa để thực hiện kiểm tra này khi tạo thực thể cho công cụ gắn nhãn hình ảnh: tạo một nhãn từ mô hình từ xa nếu mô hình đã được tải xuống và từ mô hình khác.

Java

FirebaseModelManager.getInstance().isModelDownloaded(remoteModel)
        .addOnSuccessListener(new OnSuccessListener<Boolean>() {
            @Override
            public void onSuccess(Boolean isDownloaded) {
                FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder optionsBuilder;
                if (isDownloaded) {
                    optionsBuilder = new FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(remoteModel);
                } else {
                    optionsBuilder = new FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel);
                }
                FirebaseVisionOnDeviceAutoMLImageLabelerOptions options = optionsBuilder
                        .setConfidenceThreshold(0.0f)  // Evaluate your model in the Firebase console
                                                       // to determine an appropriate threshold.
                        .build();

                FirebaseVisionImageLabeler labeler;
                try {
                    labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options);
                } catch (FirebaseMLException e) {
                    // Error.
                }
            }
        });

Kotlin+KTX

FirebaseModelManager.getInstance().isModelDownloaded(remoteModel)
    .addOnSuccessListener { isDownloaded -> 
    val optionsBuilder =
        if (isDownloaded) {
            FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(remoteModel)
        } else {
            FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel)
        }
    // Evaluate your model in the Firebase console to determine an appropriate threshold.
    val options = optionsBuilder.setConfidenceThreshold(0.0f).build()
    val labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options)
}

Nếu chỉ có một mô hình được lưu trữ từ xa, bạn nên tắt tính năng liên quan đến mô hình đó chức năng (ví dụ: chuyển sang màu xám hoặc ẩn một phần giao diện người dùng) cho đến khi bạn xác nhận mô hình đã được tải xuống. Bạn có thể thực hiện việc này bằng cách đính kèm một trình nghe đối với phương thức download() của trình quản lý mô hình:

Java

FirebaseModelManager.getInstance().download(remoteModel, conditions)
        .addOnSuccessListener(new OnSuccessListener<Void>() {
            @Override
            public void onSuccess(Void v) {
              // Download complete. Depending on your app, you could enable
              // the ML feature, or switch from the local model to the remote
              // model, etc.
            }
        });

Kotlin+KTX

FirebaseModelManager.getInstance().download(remoteModel, conditions)
    .addOnCompleteListener {
        // Download complete. Depending on your app, you could enable the ML
        // feature, or switch from the local model to the remote model, etc.
    }

2. Chuẩn bị hình ảnh đầu vào

Sau đó, đối với mỗi hình ảnh bạn muốn gắn nhãn, hãy tạo một đối tượng FirebaseVisionImage bằng cách sử dụng một trong các tuỳ chọn được mô tả trong phần này và truyền tuỳ chọn đó vào một thực thể của FirebaseVisionImageLabeler (như mô tả trong phần tiếp theo).

Bạn có thể tạo đối tượng FirebaseVisionImage từ đối tượng media.Image, một trên thiết bị, một mảng byte hoặc một đối tượng Bitmap:

  • Cách tạo đối tượng FirebaseVisionImage qua Đối tượng media.Image, chẳng hạn như khi chụp ảnh từ camera của thiết bị, hãy truyền đối tượng media.Image và xoay thành FirebaseVisionImage.fromMediaImage().

    Nếu bạn sử dụng Thư viện CameraX, OnImageCapturedListener và Các lớp ImageAnalysis.Analyzer tính toán giá trị xoay cho bạn, nên bạn chỉ cần chuyển đổi chế độ xoay vòng thành một Hằng số ROTATION_ trước khi gọi FirebaseVisionImage.fromMediaImage():

    Java

    private class YourAnalyzer implements ImageAnalysis.Analyzer {
    
        private int degreesToFirebaseRotation(int degrees) {
            switch (degrees) {
                case 0:
                    return FirebaseVisionImageMetadata.ROTATION_0;
                case 90:
                    return FirebaseVisionImageMetadata.ROTATION_90;
                case 180:
                    return FirebaseVisionImageMetadata.ROTATION_180;
                case 270:
                    return FirebaseVisionImageMetadata.ROTATION_270;
                default:
                    throw new IllegalArgumentException(
                            "Rotation must be 0, 90, 180, or 270.");
            }
        }
    
        @Override
        public void analyze(ImageProxy imageProxy, int degrees) {
            if (imageProxy == null || imageProxy.getImage() == null) {
                return;
            }
            Image mediaImage = imageProxy.getImage();
            int rotation = degreesToFirebaseRotation(degrees);
            FirebaseVisionImage image =
                    FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
            // Pass image to an ML Kit Vision API
            // ...
        }
    }

    Kotlin+KTX

    private class YourImageAnalyzer : ImageAnalysis.Analyzer {
        private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
            0 -> FirebaseVisionImageMetadata.ROTATION_0
            90 -> FirebaseVisionImageMetadata.ROTATION_90
            180 -> FirebaseVisionImageMetadata.ROTATION_180
            270 -> FirebaseVisionImageMetadata.ROTATION_270
            else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
        }
    
        override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
            val mediaImage = imageProxy?.image
            val imageRotation = degreesToFirebaseRotation(degrees)
            if (mediaImage != null) {
                val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                // Pass image to an ML Kit Vision API
                // ...
            }
        }
    }

    Nếu không sử dụng thư viện máy ảnh cho phép bạn xoay hình ảnh, có thể tính toán kích thước này dựa trên hướng xoay của thiết bị và hướng của máy ảnh cảm biến trong thiết bị:

    Java

    private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
    static {
        ORIENTATIONS.append(Surface.ROTATION_0, 90);
        ORIENTATIONS.append(Surface.ROTATION_90, 0);
        ORIENTATIONS.append(Surface.ROTATION_180, 270);
        ORIENTATIONS.append(Surface.ROTATION_270, 180);
    }
    
    /**
     * Get the angle by which an image must be rotated given the device's current
     * orientation.
     */
    @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
    private int getRotationCompensation(String cameraId, Activity activity, Context context)
            throws CameraAccessException {
        // Get the device's current rotation relative to its "native" orientation.
        // Then, from the ORIENTATIONS table, look up the angle the image must be
        // rotated to compensate for the device's rotation.
        int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
        int rotationCompensation = ORIENTATIONS.get(deviceRotation);
    
        // On most devices, the sensor orientation is 90 degrees, but for some
        // devices it is 270 degrees. For devices with a sensor orientation of
        // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
        CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
        int sensorOrientation = cameraManager
                .getCameraCharacteristics(cameraId)
                .get(CameraCharacteristics.SENSOR_ORIENTATION);
        rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
    
        // Return the corresponding FirebaseVisionImageMetadata rotation value.
        int result;
        switch (rotationCompensation) {
            case 0:
                result = FirebaseVisionImageMetadata.ROTATION_0;
                break;
            case 90:
                result = FirebaseVisionImageMetadata.ROTATION_90;
                break;
            case 180:
                result = FirebaseVisionImageMetadata.ROTATION_180;
                break;
            case 270:
                result = FirebaseVisionImageMetadata.ROTATION_270;
                break;
            default:
                result = FirebaseVisionImageMetadata.ROTATION_0;
                Log.e(TAG, "Bad rotation value: " + rotationCompensation);
        }
        return result;
    }

    Kotlin+KTX

    private val ORIENTATIONS = SparseIntArray()
    
    init {
        ORIENTATIONS.append(Surface.ROTATION_0, 90)
        ORIENTATIONS.append(Surface.ROTATION_90, 0)
        ORIENTATIONS.append(Surface.ROTATION_180, 270)
        ORIENTATIONS.append(Surface.ROTATION_270, 180)
    }
    /**
     * Get the angle by which an image must be rotated given the device's current
     * orientation.
     */
    @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
    @Throws(CameraAccessException::class)
    private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
        // Get the device's current rotation relative to its "native" orientation.
        // Then, from the ORIENTATIONS table, look up the angle the image must be
        // rotated to compensate for the device's rotation.
        val deviceRotation = activity.windowManager.defaultDisplay.rotation
        var rotationCompensation = ORIENTATIONS.get(deviceRotation)
    
        // On most devices, the sensor orientation is 90 degrees, but for some
        // devices it is 270 degrees. For devices with a sensor orientation of
        // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
        val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
        val sensorOrientation = cameraManager
                .getCameraCharacteristics(cameraId)
                .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
        rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
    
        // Return the corresponding FirebaseVisionImageMetadata rotation value.
        val result: Int
        when (rotationCompensation) {
            0 -> result = FirebaseVisionImageMetadata.ROTATION_0
            90 -> result = FirebaseVisionImageMetadata.ROTATION_90
            180 -> result = FirebaseVisionImageMetadata.ROTATION_180
            270 -> result = FirebaseVisionImageMetadata.ROTATION_270
            else -> {
                result = FirebaseVisionImageMetadata.ROTATION_0
                Log.e(TAG, "Bad rotation value: $rotationCompensation")
            }
        }
        return result
    }

    Sau đó, hãy truyền đối tượng media.Image và thành FirebaseVisionImage.fromMediaImage():

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

    Kotlin+KTX

    val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
  • Để tạo đối tượng FirebaseVisionImage qua URI tệp, hãy truyền ngữ cảnh ứng dụng và URI tệp để FirebaseVisionImage.fromFilePath() Điều này rất hữu ích khi bạn sử dụng ý định ACTION_GET_CONTENT để nhắc người dùng chọn một bức ảnh trong ứng dụng thư viện của họ.

    Java

    FirebaseVisionImage image;
    try {
        image = FirebaseVisionImage.fromFilePath(context, uri);
    } catch (IOException e) {
        e.printStackTrace();
    }

    Kotlin+KTX

    val image: FirebaseVisionImage
    try {
        image = FirebaseVisionImage.fromFilePath(context, uri)
    } catch (e: IOException) {
        e.printStackTrace()
    }
  • Cách tạo đối tượng FirebaseVisionImage qua ByteBuffer hoặc một mảng byte, trước tiên, hãy tính hình ảnh như mô tả ở trên cho đầu vào media.Image.

    Sau đó, hãy tạo một đối tượng FirebaseVisionImageMetadata có chứa chiều cao, chiều rộng, định dạng mã hoá màu của hình ảnh, và xoay:

    Java

    FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
            .setWidth(480)   // 480x360 is typically sufficient for
            .setHeight(360)  // image recognition
            .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
            .setRotation(rotation)
            .build();

    Kotlin+KTX

    val metadata = FirebaseVisionImageMetadata.Builder()
            .setWidth(480) // 480x360 is typically sufficient for
            .setHeight(360) // image recognition
            .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
            .setRotation(rotation)
            .build()

    Sử dụng vùng đệm hoặc mảng và đối tượng siêu dữ liệu để tạo một Đối tượng FirebaseVisionImage:

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
    // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

    Kotlin+KTX

    val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
    // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
  • Cách tạo đối tượng FirebaseVisionImage qua Đối tượng Bitmap:

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

    Kotlin+KTX

    val image = FirebaseVisionImage.fromBitmap(bitmap)
    Hình ảnh mà đối tượng Bitmap đại diện phải thẳng đứng mà không cần xoay thêm.

3. Chạy công cụ gắn nhãn hình ảnh

Để gắn nhãn cho các đối tượng trong hình ảnh, hãy truyền đối tượng FirebaseVisionImage vào phương thức Phương thức processImage() của FirebaseVisionImageLabeler.

Java

labeler.processImage(image)
        .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionImageLabel>>() {
            @Override
            public void onSuccess(List<FirebaseVisionImageLabel> labels) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

Kotlin+KTX

labeler.processImage(image)
        .addOnSuccessListener { labels ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

Nếu gắn nhãn hình ảnh thành công, một mảng đối tượng FirebaseVisionImageLabel sẽ được chuyển đến trình nghe thành công. Từ mỗi đối tượng, bạn có thể lấy được thông tin về đối tượng nhận diện được trong hình ảnh.

Ví dụ:

Java

for (FirebaseVisionImageLabel label: labels) {
    String text = label.getText();
    float confidence = label.getConfidence();
}

Kotlin+KTX

for (label in labels) {
    val text = label.text
    val confidence = label.confidence
}

Mẹo cải thiện hiệu suất theo thời gian thực

  • Điều tiết lệnh gọi đến trình phát hiện. Nếu một khung video mới trong khi trình phát hiện đang chạy, hãy thả khung hình.
  • Nếu bạn đang sử dụng đầu ra của trình phát hiện để phủ đồ hoạ lên hình ảnh đầu vào, trước tiên hãy lấy kết quả từ Bộ công cụ học máy, sau đó kết xuất hình ảnh và phủ lên trên trong một bước duy nhất. Khi làm vậy, bạn sẽ kết xuất lên giao diện màn hình một lần cho mỗi khung đầu vào.
  • Nếu bạn sử dụng API Camera2, hãy chụp ảnh trong Định dạng ImageFormat.YUV_420_888.

    Nếu bạn sử dụng API Máy ảnh cũ, hãy chụp ảnh trong Định dạng ImageFormat.NV21.