Android पर एमएल किट की मदद से, इमेज में मौजूद टेक्स्ट की पहचान करना

इमेज में मौजूद टेक्स्ट की पहचान करने के लिए, एमएल किट का इस्तेमाल किया जा सकता है. ML किट में अलग-अलग कामों के लिए इस्तेमाल किया जाने वाला एपीआई, जो इमेज में मौजूद टेक्स्ट की पहचान करने के लिए सही है. जैसे, स्ट्रीट साइन का टेक्स्ट, और एक API जो दस्तावेज़. अलग-अलग कामों के लिए इस्तेमाल किए जाने वाले एपीआई में, उपयोगकर्ता के डिवाइस और क्लाउड-आधारित, दोनों मॉडल उपलब्ध हैं. दस्तावेज़ में मौजूद टेक्स्ट की पहचान करने की सुविधा, सिर्फ़ क्लाउड-आधारित मॉडल के तौर पर उपलब्ध है. ज़्यादा जानकारी के लिए, खास जानकारी: क्लाउड और उपयोगकर्ता के डिवाइस पर उपलब्ध मॉडल के लिए उपलब्ध है.

शुरू करने से पहले

  1. अगर आपने अब तक ऐसा नहीं किया है, तो अपने Android प्रोजेक्ट में Firebase जोड़ें.
  2. अपने मॉड्यूल में एमएल किट Android लाइब्रेरी के लिए डिपेंडेंसी जोड़ें (ऐप्लिकेशन-लेवल) Gradle फ़ाइल (आम तौर पर app/build.gradle):
    apply plugin: 'com.android.application'
    apply plugin: 'com.google.gms.google-services'
    
    dependencies {
      // ...
    
      implementation 'com.google.firebase:firebase-ml-vision:24.0.3'
    }
    
  3. यह ज़रूरी नहीं है, लेकिन इसका सुझाव दिया जाता है: अगर उपयोगकर्ता के डिवाइस पर एपीआई का इस्तेमाल किया जा रहा है, तो अपनी ऐसा करने के बाद, आपके डिवाइस पर एमएल मॉडल अपने-आप डाउनलोड हो जाएगा Play Store से इंस्टॉल किया गया है.

    ऐसा करने के लिए, अपने ऐप्लिकेशन की जानकारी में यह एलान जोड़ें AndroidManifest.xml फ़ाइल:

    <application ...>
      ...
      <meta-data
          android:name="com.google.firebase.ml.vision.DEPENDENCIES"
          android:value="ocr" />
      <!-- To use multiple models: android:value="ocr,model2,model3" -->
    </application>
    
    अभी तक किसी भी व्यक्ति ने चेक इन नहीं किया है अगर इंस्टॉल के समय मॉडल डाउनलोड करने की सुविधा चालू नहीं की जाती है, तो मॉडल डिवाइस पर पहली बार डिटेक्टर का इस्तेमाल करने पर डाउनलोड किया गया. आपके अनुरोध डाउनलोड पूरा होने से पहले ही कोई नतीजा नहीं मिलेगा.
  4. अगर आपको क्लाउड-आधारित मॉडल का इस्तेमाल करना है और आपने इसे पहले से चालू नहीं किया है क्लाउड-आधारित एपीआई का इस्तेमाल करना है, तो इसे अभी करें:

    1. एमएल किट खोलें Firebase कंसोल का एपीआई पेज.
    2. अगर आपने पहले से अपने प्रोजेक्ट को Blaze प्राइसिंग प्लान में अपग्रेड नहीं किया है, तो ऐसा करने के लिए अपग्रेड करें. (आपको अपग्रेड करने के लिए तभी कहा जाएगा, जब प्रोजेक्ट ब्लेज़ प्लान में नहीं है.)

      सिर्फ़ ब्लेज़-लेवल के प्रोजेक्ट ही क्लाउड-आधारित एपीआई का इस्तेमाल कर सकते हैं.

    3. अगर क्लाउड-आधारित एपीआई पहले से चालू नहीं हैं, तो क्लाउड-आधारित एपीआई चालू करें APIs.

    अगर आपको सिर्फ़ डिवाइस में मौजूद मॉडल का इस्तेमाल करना है, तो इस चरण को छोड़ा जा सकता है.

अब आप इमेज में मौजूद टेक्स्ट की पहचान करने के लिए तैयार हैं.

इनपुट इमेज के लिए दिशा-निर्देश

  • एमएल किट टेक्स्ट की सटीक पहचान कर सके, इसके लिए इनपुट इमेज में ये चीज़ें होनी चाहिए ज़रूरत के मुताबिक पिक्सल डेटा से दिखाया जाने वाला टेक्स्ट. आम तौर पर, लैटिन भाषा के लिए टेक्स्ट के लिए, हर वर्ण कम से कम 16x16 पिक्सल का होना चाहिए. चाइनीज़ के लिए, जैपनीज़ और कोरियन टेक्स्ट के लिए (सिर्फ़ क्लाउड-आधारित एपीआई पर काम करता है) वर्ण 24x24 पिक्सल का होना चाहिए. सभी भाषाओं के लिए, आम तौर पर यह 24x24 पिक्सल से ज़्यादा बड़े वर्णों के लिए, सटीक होने का फ़ायदा देता है.

    उदाहरण के लिए, बिज़नेस कार्ड को स्कैन करने के लिए, 640x480 की इमेज अच्छी तरह से काम कर सकती है जो इमेज की पूरी चौड़ाई में समा जाता है. प्रिंट किए गए दस्तावेज़ को स्कैन करने के लिए अक्षर के साइज़ के पेपर के साथ, 720x1280 पिक्सल की इमेज की ज़रूरत पड़ सकती है.

  • इमेज पर फ़ोकस खराब होने से, टेक्स्ट की पहचान करने के तरीके पर बुरा असर पड़ सकता है. अगर आपको सही नतीजे पाने के लिए, उपयोगकर्ता को इमेज दोबारा कैप्चर करने के लिए कहें.

  • अगर टेक्स्ट की पहचान रीयल-टाइम में की जा रही है, तो आपको इनपुट इमेज के कुल डाइमेंशन को ध्यान में रखना चाहिए. इससे छोटा छवियों को तेज़ी से संसाधित किया जा सकता है, इसलिए प्रतीक्षा अवधि को कम करने के लिए, कम रिज़ॉल्यूशन (ऊपर बताई गई सटीक होने से जुड़ी ज़रूरी शर्तों को ध्यान में रखते हुए) और पक्का करें कि टेक्स्ट, इमेज के ज़्यादा से ज़्यादा हिस्से में हो. यह भी देखें रीयल-टाइम में परफ़ॉर्मेंस को बेहतर बनाने के लिए सलाह.


इमेज में मौजूद टेक्स्ट की पहचान करें

डिवाइस या क्लाउड-आधारित मॉडल का इस्तेमाल करके, किसी इमेज में मौजूद टेक्स्ट की पहचान करने के लिए, नीचे बताए गए तरीके से टेक्स्ट आइडेंटिफ़ायर को चलाएं.

1. टेक्स्ट आइडेंटिफ़ायर चलाएं

किसी इमेज में मौजूद टेक्स्ट की पहचान करने के लिए, FirebaseVisionImage ऑब्जेक्ट बनाएं किसी Bitmap, media.Image, ByteBuffer, बाइट कलेक्शन से या डिवाइस. इसके बाद, FirebaseVisionImage ऑब्जेक्ट को FirebaseVisionTextRecognizer का processImage तरीका.

  1. अपनी इमेज से FirebaseVisionImage ऑब्जेक्ट बनाएं.

    • किसीFirebaseVisionImage media.Image ऑब्जेक्ट, जैसे कि किसी ऑब्जेक्ट से इमेज कैप्चर करते समय करने के लिए, media.Image ऑब्जेक्ट को पास करें और चित्र के FirebaseVisionImage.fromMediaImage() पर घुमाया गया.

      अगर आपको CameraX लाइब्रेरी, OnImageCapturedListener, और ImageAnalysis.Analyzer क्लास, रोटेशन वैल्यू को कैलकुलेट करती हैं आपके लिए है, इसलिए आपको रोटेशन को सिर्फ़ एक ML किट के रूप में बदलना होगा कॉल करने से पहले ROTATION_ कॉन्सटेंट FirebaseVisionImage.fromMediaImage():

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Kit Vision API
              // ...
          }
      }
      

      Kotlin+KTX

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Kit Vision API
                  // ...
              }
          }
      }
      

      अगर इमेज को घुमाने की सुविधा देने वाली कैमरा लाइब्रेरी का इस्तेमाल नहीं किया जाता है, तो डिवाइस के रोटेशन और कैमरे के ओरिएंटेशन से इसका हिसाब लगा सकता है डिवाइस में सेंसर:

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Kotlin+KTX

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      इसके बाद, media.Image ऑब्जेक्ट को पास करें और FirebaseVisionImage.fromMediaImage() का रोटेशन मान:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
    • किसी फ़ाइल यूआरआई से FirebaseVisionImage ऑब्जेक्ट बनाने के लिए, पास करें ऐप्लिकेशन का कॉन्टेक्स्ट और फ़ाइल यूआरआई को FirebaseVisionImage.fromFilePath(). यह तब काम आता है, जब उपयोगकर्ता को चुनने का प्रॉम्प्ट भेजने के लिए, ACTION_GET_CONTENT इंटेंट का इस्तेमाल करें अपने गैलरी ऐप्लिकेशन से मिली इमेज शामिल करेगा.

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }

      Kotlin+KTX

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }
    • किसीFirebaseVisionImage ByteBuffer या बाइट अरे, पहले चित्र की गणना करें media.Image इनपुट के लिए ऊपर बताए गए तरीके से रोटेशन.

      इसके बाद, FirebaseVisionImageMetadata ऑब्जेक्ट बनाएं जिसमें इमेज की ऊंचाई, चौड़ाई, कलर एन्कोडिंग फ़ॉर्मैट, और रोटेशन:

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Kotlin+KTX

      val metadata = FirebaseVisionImageMetadata.Builder()
              .setWidth(480) // 480x360 is typically sufficient for
              .setHeight(360) // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build()

      बफ़र या अरे और मेटाडेटा ऑब्जेक्ट का इस्तेमाल करके, FirebaseVisionImage ऑब्जेक्ट:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
    • किसीFirebaseVisionImage Bitmap ऑब्जेक्ट:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromBitmap(bitmap)
      Bitmap ऑब्जेक्ट के ज़रिए दिखाई जाने वाली इमेज में सीधा होना चाहिए, इसके लिए किसी अतिरिक्त रोटेशन की आवश्यकता नहीं होगी.

  2. FirebaseVisionTextRecognizer का एक इंस्टेंस पाएं.

    डिवाइस पर मौजूद मॉडल का इस्तेमाल करने के लिए:

    Java

    FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance()
            .getOnDeviceTextRecognizer();

    Kotlin+KTX

    val detector = FirebaseVision.getInstance()
            .onDeviceTextRecognizer

    क्लाउड-आधारित मॉडल का इस्तेमाल करने के लिए:

    Java

    FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance()
            .getCloudTextRecognizer();
    // Or, to change the default settings:
    //   FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance()
    //          .getCloudTextRecognizer(options);
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FirebaseVisionCloudTextRecognizerOptions options = new FirebaseVisionCloudTextRecognizerOptions.Builder()
            .setLanguageHints(Arrays.asList("en", "hi"))
            .build();
    

    Kotlin+KTX

    val detector = FirebaseVision.getInstance().cloudTextRecognizer
    // Or, to change the default settings:
    // val detector = FirebaseVision.getInstance().getCloudTextRecognizer(options)
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    val options = FirebaseVisionCloudTextRecognizerOptions.Builder()
            .setLanguageHints(listOf("en", "hi"))
            .build()
    
  3. आखिर में, इमेज को processImage तरीके से पास करें:

    Java

    Task<FirebaseVisionText> result =
            detector.processImage(image)
                    .addOnSuccessListener(new OnSuccessListener<FirebaseVisionText>() {
                        @Override
                        public void onSuccess(FirebaseVisionText firebaseVisionText) {
                            // Task completed successfully
                            // ...
                        }
                    })
                    .addOnFailureListener(
                            new OnFailureListener() {
                                @Override
                                public void onFailure(@NonNull Exception e) {
                                    // Task failed with an exception
                                    // ...
                                }
                            });

    Kotlin+KTX

    val result = detector.processImage(image)
            .addOnSuccessListener { firebaseVisionText ->
                // Task completed successfully
                // ...
            }
            .addOnFailureListener { e ->
                // Task failed with an exception
                // ...
            }

2. पहचाने गए टेक्स्ट के ब्लॉक से टेक्स्ट निकालें

अगर टेक्स्ट की पहचान करने की कार्रवाई पूरी हो जाती है, तो FirebaseVisionText ऑब्जेक्ट को पास कर दिया जाएगा लिसनर. FirebaseVisionText ऑब्जेक्ट में पूरा टेक्स्ट शामिल है, जिसकी पहचान की गई है इमेज और शून्य या उससे ज़्यादा TextBlock ऑब्जेक्ट.

हर TextBlock, टेक्स्ट के ऐसे आयताकार ब्लॉक को दिखाता है जिसमें शून्य या और Line ऑब्जेक्ट. हर Line ऑब्जेक्ट में शून्य या उससे ज़्यादा है Element ऑब्जेक्ट, जो शब्दों को दिखाते हैं और शब्द जैसे दिखते हैं इकाइयां (तारीख, संख्याएं वगैरह).

हर TextBlock, Line, और Element ऑब्जेक्ट के लिए, आपको टेक्स्ट मिल सकता है की पहचान हो जाती है.

उदाहरण के लिए:

Java

String resultText = result.getText();
for (FirebaseVisionText.TextBlock block: result.getTextBlocks()) {
    String blockText = block.getText();
    Float blockConfidence = block.getConfidence();
    List<RecognizedLanguage> blockLanguages = block.getRecognizedLanguages();
    Point[] blockCornerPoints = block.getCornerPoints();
    Rect blockFrame = block.getBoundingBox();
    for (FirebaseVisionText.Line line: block.getLines()) {
        String lineText = line.getText();
        Float lineConfidence = line.getConfidence();
        List<RecognizedLanguage> lineLanguages = line.getRecognizedLanguages();
        Point[] lineCornerPoints = line.getCornerPoints();
        Rect lineFrame = line.getBoundingBox();
        for (FirebaseVisionText.Element element: line.getElements()) {
            String elementText = element.getText();
            Float elementConfidence = element.getConfidence();
            List<RecognizedLanguage> elementLanguages = element.getRecognizedLanguages();
            Point[] elementCornerPoints = element.getCornerPoints();
            Rect elementFrame = element.getBoundingBox();
        }
    }
}

Kotlin+KTX

val resultText = result.text
for (block in result.textBlocks) {
    val blockText = block.text
    val blockConfidence = block.confidence
    val blockLanguages = block.recognizedLanguages
    val blockCornerPoints = block.cornerPoints
    val blockFrame = block.boundingBox
    for (line in block.lines) {
        val lineText = line.text
        val lineConfidence = line.confidence
        val lineLanguages = line.recognizedLanguages
        val lineCornerPoints = line.cornerPoints
        val lineFrame = line.boundingBox
        for (element in line.elements) {
            val elementText = element.text
            val elementConfidence = element.confidence
            val elementLanguages = element.recognizedLanguages
            val elementCornerPoints = element.cornerPoints
            val elementFrame = element.boundingBox
        }
    }
}

रीयल-टाइम परफ़ॉर्मेंस को बेहतर बनाने के लिए सलाह

टेक्स्ट की पहचान रीयल-टाइम में करने के लिए, डिवाइस पर मौजूद मॉडल का इस्तेमाल करने के लिए आवेदन करते समय, सर्वश्रेष्ठ फ़्रेमरेट हासिल करने के लिए इन दिशा-निर्देशों का पालन करें:

  • कॉल को टेक्स्ट आइडेंटिफ़ायर को थ्रॉटल करें. अगर कोई नया वीडियो फ़्रेम टेक्स्ट आइडेंटिफ़ायर के चलने के दौरान उपलब्ध होता है, तो फ़्रेम छोड़ें.
  • अगर ग्राफ़िक ओवरले करने के लिए, टेक्स्ट आइडेंटिफ़ायर के आउटपुट का इस्तेमाल किया जा रहा है इनपुट इमेज को चुनने के बाद, पहले एमएल किट से नतीजा पाएं. इसके बाद, इमेज को रेंडर करें और ओवरले को एक ही चरण में पूरा करें. ऐसा करके, डिसप्ले सरफ़ेस पर रेंडर हो जाता है हर इनपुट फ़्रेम के लिए सिर्फ़ एक बार.
  • Camera2 API का इस्तेमाल करने पर, इमेज यहां कैप्चर करें ImageFormat.YUV_420_888 फ़ॉर्मैट.

    अगर पुराने Camera API का इस्तेमाल किया जा रहा है, तो इमेज यहां कैप्चर करें ImageFormat.NV21 फ़ॉर्मैट.

  • कम रिज़ॉल्यूशन वाली इमेज कैप्चर करें. हालांकि, यह भी ध्यान रखें कि इस एपीआई की इमेज डाइमेंशन से जुड़ी ज़रूरी शर्तें.

अगले चरण


दस्तावेज़ों की इमेज में मौजूद टेक्स्ट की पहचान करें

किसी दस्तावेज़ के टेक्स्ट की पहचान करने के लिए, क्लाउड-आधारित ऑपरेटिंग सिस्टम को कॉन्फ़िगर करें और चलाएं दस्तावेज़ पाठ पहचानकर्ता जैसा कि नीचे बताया गया है.

नीचे बताया गया, दस्तावेज़ टेक्स्ट की पहचान करने वाला एपीआई ऐसा इंटरफ़ेस देता है जो दस्तावेज़ों की इमेज के साथ काम करने के लिए डिज़ाइन किया गया है. हालांकि, अगर आपको FirebaseVisionTextRecognizer एपीआई से मिला इंटरफ़ेस पसंद है, इसके बजाय, क्लाउड टेक्स्ट को कॉन्फ़िगर करके दस्तावेज़ों को स्कैन किया जा सकता है आइडेंटिफ़ायर के लिए, सघन टेक्स्ट वाले मॉडल का इस्तेमाल करने का विकल्प होता है.

दस्तावेज़ टेक्स्ट की पहचान करने वाले एपीआई का इस्तेमाल करने के लिए:

1. टेक्स्ट आइडेंटिफ़ायर चलाएं

किसी इमेज में मौजूद टेक्स्ट की पहचान करने के लिए, इनमें से किसी एक से FirebaseVisionImage ऑब्जेक्ट बनाएं Bitmap, media.Image, ByteBuffer, बाइट अरे या डिवाइस पर मौजूद कोई फ़ाइल. इसके बाद, FirebaseVisionImage ऑब्जेक्ट को FirebaseVisionDocumentTextRecognizer का processImage तरीका.

  1. अपनी इमेज से FirebaseVisionImage ऑब्जेक्ट बनाएं.

    • किसीFirebaseVisionImage media.Image ऑब्जेक्ट, जैसे कि किसी ऑब्जेक्ट से इमेज कैप्चर करते समय करने के लिए, media.Image ऑब्जेक्ट को पास करें और चित्र के FirebaseVisionImage.fromMediaImage() पर घुमाया गया.

      अगर आपको CameraX लाइब्रेरी, OnImageCapturedListener, और ImageAnalysis.Analyzer क्लास, रोटेशन वैल्यू को कैलकुलेट करती हैं आपके लिए है, इसलिए आपको रोटेशन को सिर्फ़ एक ML किट के रूप में बदलना होगा कॉल करने से पहले ROTATION_ कॉन्सटेंट FirebaseVisionImage.fromMediaImage():

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Kit Vision API
              // ...
          }
      }
      

      Kotlin+KTX

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Kit Vision API
                  // ...
              }
          }
      }
      

      अगर इमेज को घुमाने की सुविधा देने वाली कैमरा लाइब्रेरी का इस्तेमाल नहीं किया जाता है, तो डिवाइस के रोटेशन और कैमरे के ओरिएंटेशन से इसका हिसाब लगा सकता है डिवाइस में सेंसर:

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Kotlin+KTX

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      इसके बाद, media.Image ऑब्जेक्ट को पास करें और FirebaseVisionImage.fromMediaImage() का रोटेशन मान:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
    • किसी फ़ाइल यूआरआई से FirebaseVisionImage ऑब्जेक्ट बनाने के लिए, पास करें ऐप्लिकेशन का कॉन्टेक्स्ट और फ़ाइल यूआरआई को FirebaseVisionImage.fromFilePath(). यह तब काम आता है, जब उपयोगकर्ता को चुनने का प्रॉम्प्ट भेजने के लिए, ACTION_GET_CONTENT इंटेंट का इस्तेमाल करें अपने गैलरी ऐप्लिकेशन से मिली इमेज शामिल करेगा.

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }

      Kotlin+KTX

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }
    • किसीFirebaseVisionImage ByteBuffer या बाइट अरे, पहले चित्र की गणना करें media.Image इनपुट के लिए ऊपर बताए गए तरीके से रोटेशन.

      इसके बाद, FirebaseVisionImageMetadata ऑब्जेक्ट बनाएं जिसमें इमेज की ऊंचाई, चौड़ाई, कलर एन्कोडिंग फ़ॉर्मैट, और रोटेशन:

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Kotlin+KTX

      val metadata = FirebaseVisionImageMetadata.Builder()
              .setWidth(480) // 480x360 is typically sufficient for
              .setHeight(360) // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build()

      बफ़र या अरे और मेटाडेटा ऑब्जेक्ट का इस्तेमाल करके, FirebaseVisionImage ऑब्जेक्ट:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
    • किसीFirebaseVisionImage Bitmap ऑब्जेक्ट:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromBitmap(bitmap)
      Bitmap ऑब्जेक्ट के ज़रिए दिखाई जाने वाली इमेज में सीधा होना चाहिए, इसके लिए किसी अतिरिक्त रोटेशन की आवश्यकता नहीं होगी.

  2. का एक इंस्टेंस पाएं FirebaseVisionDocumentTextRecognizer:

    Java

    FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance()
            .getCloudDocumentTextRecognizer();
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FirebaseVisionCloudDocumentRecognizerOptions options =
            new FirebaseVisionCloudDocumentRecognizerOptions.Builder()
                    .setLanguageHints(Arrays.asList("en", "hi"))
                    .build();
    FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance()
            .getCloudDocumentTextRecognizer(options);

    Kotlin+KTX

    val detector = FirebaseVision.getInstance()
            .cloudDocumentTextRecognizer
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    val options = FirebaseVisionCloudDocumentRecognizerOptions.Builder()
            .setLanguageHints(listOf("en", "hi"))
            .build()
    val detector = FirebaseVision.getInstance()
            .getCloudDocumentTextRecognizer(options)

  3. आखिर में, इमेज को processImage तरीके से पास करें:

    Java

    detector.processImage(myImage)
            .addOnSuccessListener(new OnSuccessListener<FirebaseVisionDocumentText>() {
                @Override
                public void onSuccess(FirebaseVisionDocumentText result) {
                    // Task completed successfully
                    // ...
                }
            })
            .addOnFailureListener(new OnFailureListener() {
                @Override
                public void onFailure(@NonNull Exception e) {
                    // Task failed with an exception
                    // ...
                }
            });

    Kotlin+KTX

    detector.processImage(myImage)
            .addOnSuccessListener { firebaseVisionDocumentText ->
                // Task completed successfully
                // ...
            }
            .addOnFailureListener { e ->
                // Task failed with an exception
                // ...
            }

2. पहचाने गए टेक्स्ट के ब्लॉक से टेक्स्ट निकालें

अगर लेख पहचान कार्रवाई सफल होती है, तो यह FirebaseVisionDocumentText ऑब्जेक्ट. ऐप्लिकेशन FirebaseVisionDocumentText ऑब्जेक्ट में पूरा टेक्स्ट शामिल है, जिसकी पहचान इमेज और ऑब्जेक्ट की हैरारकी है, जो मान्य दस्तावेज़:

हर Block, Paragraph, Word, और Symbol ऑब्जेक्ट के लिए, आपको यह मिल सकता है क्षेत्र में पहचाने गए टेक्स्ट और क्षेत्र के सीमा वाले निर्देशांक.

उदाहरण के लिए:

Java

String resultText = result.getText();
for (FirebaseVisionDocumentText.Block block: result.getBlocks()) {
    String blockText = block.getText();
    Float blockConfidence = block.getConfidence();
    List<RecognizedLanguage> blockRecognizedLanguages = block.getRecognizedLanguages();
    Rect blockFrame = block.getBoundingBox();
    for (FirebaseVisionDocumentText.Paragraph paragraph: block.getParagraphs()) {
        String paragraphText = paragraph.getText();
        Float paragraphConfidence = paragraph.getConfidence();
        List<RecognizedLanguage> paragraphRecognizedLanguages = paragraph.getRecognizedLanguages();
        Rect paragraphFrame = paragraph.getBoundingBox();
        for (FirebaseVisionDocumentText.Word word: paragraph.getWords()) {
            String wordText = word.getText();
            Float wordConfidence = word.getConfidence();
            List<RecognizedLanguage> wordRecognizedLanguages = word.getRecognizedLanguages();
            Rect wordFrame = word.getBoundingBox();
            for (FirebaseVisionDocumentText.Symbol symbol: word.getSymbols()) {
                String symbolText = symbol.getText();
                Float symbolConfidence = symbol.getConfidence();
                List<RecognizedLanguage> symbolRecognizedLanguages = symbol.getRecognizedLanguages();
                Rect symbolFrame = symbol.getBoundingBox();
            }
        }
    }
}

Kotlin+KTX

val resultText = result.text
for (block in result.blocks) {
    val blockText = block.text
    val blockConfidence = block.confidence
    val blockRecognizedLanguages = block.recognizedLanguages
    val blockFrame = block.boundingBox
    for (paragraph in block.paragraphs) {
        val paragraphText = paragraph.text
        val paragraphConfidence = paragraph.confidence
        val paragraphRecognizedLanguages = paragraph.recognizedLanguages
        val paragraphFrame = paragraph.boundingBox
        for (word in paragraph.words) {
            val wordText = word.text
            val wordConfidence = word.confidence
            val wordRecognizedLanguages = word.recognizedLanguages
            val wordFrame = word.boundingBox
            for (symbol in word.symbols) {
                val symbolText = symbol.text
                val symbolConfidence = symbol.confidence
                val symbolRecognizedLanguages = symbol.recognizedLanguages
                val symbolFrame = symbol.boundingBox
            }
        }
    }
}

अगले चरण