Barkodları tanımak ve kodunu çözmek için ML Kit'i kullanabilirsiniz.
Başlamadan önce
- Henüz yapmadıysanız Firebase'i Android projenize ekleyin.
- Modülünüze ML Kit Android kitaplıkları için bağımlılıkları ekleyin
(uygulama düzeyinde) Gradle dosyası (genellikle
app/build.gradle
):apply plugin: 'com.android.application' apply plugin: 'com.google.gms.google-services' dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:24.0.3' implementation 'com.google.firebase:firebase-ml-vision-barcode-model:16.0.1' }
Giriş resmi kuralları
-
ML Kit'in barkodları doğru okuyabilmesi için giriş resimlerinde yeterli piksel verisiyle temsil edilen barkodlar.
Belirli piksel verisi gereksinimleri hem ve kodlanan veri miktarıdır (çünkü çoğu barkod farklı uzunluklarda yükü desteklemeleri gerekir). Genellikle anlamlı olan en küçük barkodun birimi en az 2 piksel genişliğinde (ve 2 boyutlu kodlar, 2 piksel yüksekliğinde).
Örneğin, EAN-13 barkodları çubuklar ile boşluklardan oluşur. Bu boşlukların sayısı 1, 2, 3 veya 4 birim genişliğinde olduğundan EAN-13 barkod görüntüsünde ideal olarak çubuklar ve en az 2, 4, 6 ve 8 piksel genişliğinde boşluklar. Çünkü EAN-13 barkod toplam 95 birim genişliğinde, barkod en az 190 olmalıdır piksel genişliğinde.
PDF417 gibi daha yoğun biçimler için güvenli okumasını sağlayın. Örneğin, bir PDF417 kodunda en fazla 34 17 birim genişliğinde "kelimeler" bir satır olacak şekilde ekleyebilirsiniz. Bu, tercihen 1156 piksel genişliğinde.
-
Zayıf resim odağı, tarama doğruluğunu olumsuz etkileyebilir. Bu kabul edilebilir sonuçlar almak için kullanıcıdan resmi yeniden çekmesini istemeyi deneyin.
-
Tipik uygulamalarda, daha yüksek bir Barkod üreten çözünürlüklü resim (1280x720 veya 1920x1080 gibi) kameradan daha uzak bir mesafeden algılanabilir.
Ancak gecikmenin kritik olduğu uygulamalarda daha iyi daha düşük çözünürlükte çekerek daha iyi performans giriş resminin büyük kısmını barkod oluşturur. Şunlara da bakabilirsiniz: Gerçek zamanlı performansı iyileştirmeye yönelik ipuçları.
1. Barkod dedektörünü yapılandırma
Hangi barkod biçimlerini okumayı beklediğinizi bilirseniz hızı artırabilirsiniz otomatik olarak devre dışı bırakabilirsiniz.Örneğin, yalnızca Aztek kodunu ve QR kodlarını algılamak için bir
FirebaseVisionBarcodeDetectorOptions
nesnesini tanımlayın:
Java
FirebaseVisionBarcodeDetectorOptions options = new FirebaseVisionBarcodeDetectorOptions.Builder() .setBarcodeFormats( FirebaseVisionBarcode.FORMAT_QR_CODE, FirebaseVisionBarcode.FORMAT_AZTEC) .build();
Kotlin+KTX
val options = FirebaseVisionBarcodeDetectorOptions.Builder() .setBarcodeFormats( FirebaseVisionBarcode.FORMAT_QR_CODE, FirebaseVisionBarcode.FORMAT_AZTEC) .build()
Aşağıdaki biçimler desteklenir:
- Kod 128 (
FORMAT_CODE_128
) - Kod 39 (
FORMAT_CODE_39
) - Kod 93 (
FORMAT_CODE_93
) - Kodabar (
FORMAT_CODABAR
) - EAN-13 (
FORMAT_EAN_13
) - EAN-8 (
FORMAT_EAN_8
) - ITF (
FORMAT_ITF
) - UPC-A (
FORMAT_UPC_A
) - UPC-E (
FORMAT_UPC_E
) - QR Kodu (
FORMAT_QR_CODE
) - PDF417 (
FORMAT_PDF417
) - Aztek (
FORMAT_AZTEC
) - Veri Matrisi (
FORMAT_DATA_MATRIX
)
2. Barkod dedektörünü çalıştırın
Resimlerdeki barkodları tanımak için birFirebaseVisionImage
nesnesi oluşturun
bir Bitmap
, media.Image
, ByteBuffer
, bayt dizisi veya
için geçerlidir. Ardından, FirebaseVisionImage
nesnesini
FirebaseVisionBarcodeDetector
ürününün detectInImage
yöntemi.
Resminizden bir
FirebaseVisionImage
nesnesi oluşturun.-
Bir
FirebaseVisionImage
nesnesi oluşturmak içinmedia.Image
nesnesi, örneğin birmedia.Image
nesnesini ve görüntününFirebaseVisionImage.fromMediaImage()
değerine döndürülüyor.URL'yi CameraX kitaplığı,
OnImageCapturedListener
veImageAnalysis.Analyzer
sınıfları rotasyon değerini hesaplar gerekir, bu nedenle rotasyonu ML Kit'lerinden birine veya Çağrıdan önceROTATION_
sabit değerFirebaseVisionImage.fromMediaImage()
:Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
Resmin döndürmesini sağlayan bir kamera kitaplığı kullanmıyorsanız cihazın dönüşüne ve kameranın yönüne göre hesaplanabilir cihazdaki sensör:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Ardından,
media.Image
nesnesini ve rotasyon değeriniFirebaseVisionImage.fromMediaImage()
değerine ayarlayın:Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- Dosya URI'sinden bir
FirebaseVisionImage
nesnesi oluşturmak için uygulama bağlamını ve dosya URI'siniFirebaseVisionImage.fromFilePath()
. Bu özellik, kullanıcıdan seçim yapmasını istemek için birACTION_GET_CONTENT
niyeti kullanın galeri uygulamasından bir resim.Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- Bir
FirebaseVisionImage
nesnesi oluşturmak içinByteBuffer
veya bir bayt dizisi, önce görüntüyü hesaplayınmedia.Image
girişi için yukarıda açıklandığı gibi döndürülmesini sağlayın.Ardından, bir
FirebaseVisionImageMetadata
nesnesi oluşturun yüksekliğini, genişliğini, renk kodlaması biçimini ve ve rotasyon:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Aşağıdakini oluşturmak için arabelleği veya diziyi ve meta veri nesnesini kullanın:
FirebaseVisionImage
nesne:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
- Bir
FirebaseVisionImage
nesnesi oluşturmak içinBitmap
nesne:Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
nesnesi tarafından temsil edilen resim, dik olmalıdır, ek döndürme gerekmez.
-
FirebaseVisionBarcodeDetector
öğesinin bir örneğini alın:Java
FirebaseVisionBarcodeDetector detector = FirebaseVision.getInstance() .getVisionBarcodeDetector(); // Or, to specify the formats to recognize: // FirebaseVisionBarcodeDetector detector = FirebaseVision.getInstance() // .getVisionBarcodeDetector(options);
Kotlin+KTX
val detector = FirebaseVision.getInstance() .visionBarcodeDetector // Or, to specify the formats to recognize: // val detector = FirebaseVision.getInstance() // .getVisionBarcodeDetector(options)
Son olarak, resmi
detectInImage
yöntemine iletin:Java
Task<List<FirebaseVisionBarcode>> result = detector.detectInImage(image) .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionBarcode>>() { @Override public void onSuccess(List<FirebaseVisionBarcode> barcodes) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Kotlin+KTX
val result = detector.detectInImage(image) .addOnSuccessListener { barcodes -> // Task completed successfully // ... } .addOnFailureListener { // Task failed with an exception // ... }
3. Barkodlardan bilgi al
Barkod tanıma işlemi başarılı olursa, şunları içeren bir liste:FirebaseVisionBarcode
nesne başarılı işleyiciye aktarılacak. Her biri
FirebaseVisionBarcode
nesnesi,
görüntüsüdür. Her barkodun sınırlayıcı koordinatlarını
barkodla kodlanan ham verilerin yer aldığı bir ekran görüntüsüdür. Barkod
algılayıcı barkodla kodlanan veri türünü belirleyebildiğinden
ayrıştırılmış veri içeren bir nesne alır.
Örneğin:
Java
for (FirebaseVisionBarcode barcode: barcodes) { Rect bounds = barcode.getBoundingBox(); Point[] corners = barcode.getCornerPoints(); String rawValue = barcode.getRawValue(); int valueType = barcode.getValueType(); // See API reference for complete list of supported types switch (valueType) { case FirebaseVisionBarcode.TYPE_WIFI: String ssid = barcode.getWifi().getSsid(); String password = barcode.getWifi().getPassword(); int type = barcode.getWifi().getEncryptionType(); break; case FirebaseVisionBarcode.TYPE_URL: String title = barcode.getUrl().getTitle(); String url = barcode.getUrl().getUrl(); break; } }
Kotlin+KTX
for (barcode in barcodes) { val bounds = barcode.boundingBox val corners = barcode.cornerPoints val rawValue = barcode.rawValue val valueType = barcode.valueType // See API reference for complete list of supported types when (valueType) { FirebaseVisionBarcode.TYPE_WIFI -> { val ssid = barcode.wifi!!.ssid val password = barcode.wifi!!.password val type = barcode.wifi!!.encryptionType } FirebaseVisionBarcode.TYPE_URL -> { val title = barcode.url!!.title val url = barcode.url!!.url } } }
Gerçek zamanlı performansı iyileştirmeye yönelik ipuçları
Barkodları gerçek zamanlı bir uygulamada taramak istiyorsanız aşağıdaki talimatları uygulayın:
-
Girişleri kameranın orijinal çözünürlüğünde yakalamayın. Bazı cihazlarda yerel çözünürlükte giriş yakalamak çok büyük (10+ megapiksel) resimler, hiçbir yararı olmadan çok düşük gecikme emin olun. Bunun yerine, kameradan yalnızca gerekli boyutu isteyin izin verilen ses seviyesidir: Genellikle 2 megapikselden fazla değildir.
Tarama hızı önemliyse yakalanan görüntüyü daha da düşürebilirsiniz belirler. Ancak barkodla ilgili minimum boyut gereksinimlerini de göz önünde bulundurun. kontrol edin.
- Algılayıcıya yapılan çağrıları hızlandırın. Yeni bir video karesi kullanılabilir durumdaysa çerçeveyi bırakın.
- Algılayıcının çıkışını üzerine grafik yerleştirmek için kullanıyorsanız giriş görüntüsünü kullanın, önce ML Kit'ten sonucu alın ve ardından görüntüyü oluşturun tek bir adımda yapabilirsiniz. Bu şekilde, öğeleri ekran yüzeyinde her giriş karesi için yalnızca bir kez.
-
Camera2 API'sini kullanıyorsanız görüntüleri şurada yakalayın:
ImageFormat.YUV_420_888
biçimindedir.Eski Kamera API'sini kullanıyorsanız görüntüleri şurada yakalayın:
ImageFormat.NV21
biçimindedir.