iOS पर Firebase एमएल की मदद से, इमेज में मौजूद टेक्स्ट की पहचान करें

इमेज में मौजूद टेक्स्ट की पहचान करने के लिए, Firebase ML का इस्तेमाल किया जा सकता है. Firebase ML में दो तरह के एपीआई होते हैं. पहला, सामान्य मकसद के लिए इस्तेमाल किया जाने वाला एपीआई होता है. इसका इस्तेमाल इमेज में मौजूद टेक्स्ट की पहचान करने के लिए किया जाता है. जैसे, सड़क के किनारे लगे साइन बोर्ड पर मौजूद टेक्स्ट. दूसरा, दस्तावेज़ों में मौजूद टेक्स्ट की पहचान करने के लिए ऑप्टिमाइज़ किया गया एपीआई होता है.

शुरू करने से पहले

    अगर आपने पहले से ही अपने ऐप्लिकेशन में Firebase नहीं जोड़ा है, तो शुरू करने के लिए गाइड में दिए गए चरणों का पालन करके ऐसा करें.

    Firebase डिपेंडेंसी इंस्टॉल और मैनेज करने के लिए, Swift Package Manager का इस्तेमाल करें.

    1. Xcode में, अपना ऐप्लिकेशन प्रोजेक्ट खोलें. इसके बाद, File > Add Packages पर जाएं.
    2. जब आपसे कहा जाए, तब Firebase Apple प्लैटफ़ॉर्म SDK टूल की रिपॉज़िटरी जोड़ें:
    3.   https://github.com/firebase/firebase-ios-sdk.git
    4. Firebase ML लाइब्रेरी चुनें.
    5. टारगेट की बिल्ड सेटिंग के Other Linker Flags सेक्शन में -ObjC फ़्लैग जोड़ें.
    6. इसके बाद, Xcode आपके पैकेज की डिपेंडेंसी से जुड़ी समस्या को हल करना शुरू कर देगा और उन्हें बैकग्राउंड में डाउनलोड करेगा.

    इसके बाद, ऐप्लिकेशन में कुछ सेटअप करें:

    1. अपने ऐप्लिकेशन में, Firebase को इंपोर्ट करें:

      Swift

      import FirebaseMLModelDownloader

      Objective-C

      @import FirebaseMLModelDownloader;
  1. अगर आपने अपने प्रोजेक्ट के लिए क्लाउड-आधारित एपीआई पहले से चालू नहीं किए हैं, तो अभी ऐसा करें:

    1. Firebase कंसोल में, Firebase ML एपीआई पेज खोलें.
    2. अगर आपने अपने प्रोजेक्ट को इस्तेमाल के हिसाब से शुल्क चुकाने वाले Blaze प्लान पर अपग्रेड नहीं किया है, तो ऐसा करने के लिए अपग्रेड करें पर क्लिक करें. (आपको अपग्रेड करने के लिए सिर्फ़ तब कहा जाएगा, जब आपका प्रोजेक्ट Blaze प्लान पर नहीं होगा.)

      सिर्फ़ ब्लेज़ प्लान वाले प्रोजेक्ट, क्लाउड पर आधारित एपीआई का इस्तेमाल कर सकते हैं.

    3. अगर क्लाउड पर आधारित एपीआई पहले से चालू नहीं हैं, तो क्लाउड पर आधारित एपीआई चालू करें पर क्लिक करें.

अब आपके पास इमेज में मौजूद टेक्स्ट की पहचान करने की सुविधा है.

इनपुट इमेज के लिए दिशा-निर्देश

  • Firebase ML को टेक्स्ट की सही पहचान करने के लिए, इनपुट इमेज में ऐसा टेक्स्ट होना चाहिए जिसे पिक्सल डेटा के ज़रिए दिखाया गया हो. लैटिन टेक्स्ट के लिए, हर वर्ण कम से कम 16x16 पिक्सल का होना चाहिए. चाइनीज़, जैपनीज़, और कोरियन टेक्स्ट के लिए, हर वर्ण 24x24 पिक्सल का होना चाहिए. आम तौर पर, सभी भाषाओं के लिए, वर्णों को 24x24 पिक्सल से बड़ा करने पर, सटीकता में कोई फ़ायदा नहीं होता.

    इसलिए, उदाहरण के लिए, 640x480 इमेज का इस्तेमाल करके, ऐसे बिजनेस कार्ड को स्कैन किया जा सकता है जो इमेज की पूरी चौड़ाई में हो. लेटर साइज़ के पेपर पर प्रिंट किए गए दस्तावेज़ को स्कैन करने के लिए, 720x1280 पिक्सल की इमेज की ज़रूरत पड़ सकती है.

  • इमेज का फ़ोकस सही न होने पर, टेक्स्ट पहचानने की सुविधा सटीक तरीके से काम नहीं करती. अगर आपको सही नतीजे नहीं मिल रहे हैं, तो उपयोगकर्ता से इमेज को फिर से कैप्चर करने के लिए कहें.


इमेज में मौजूद टेक्स्ट की पहचान करना

किसी इमेज में मौजूद टेक्स्ट को पहचानने के लिए, टेक्स्ट पहचानने की सुविधा का इस्तेमाल करें. इसके बारे में यहां बताया गया है.

1. टेक्स्ट आइडेंटिफ़ायर को चालू करना

इमेज को UIImage या CMSampleBufferRef के तौर पर, VisionTextRecognizer के process(_:completion:) तरीके में पास करें:

  1. cloudTextRecognizer को कॉल करके, VisionTextRecognizer का इंस्टेंस पाएं:

    Swift

    let vision = Vision.vision()
    let textRecognizer = vision.cloudTextRecognizer()
    
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    let options = VisionCloudTextRecognizerOptions()
    options.languageHints = ["en", "hi"]
    let textRecognizer = vision.cloudTextRecognizer(options: options)

    Objective-C

    FIRVision *vision = [FIRVision vision];
    FIRVisionTextRecognizer *textRecognizer = [vision cloudTextRecognizer];
    
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FIRVisionCloudTextRecognizerOptions *options =
            [[FIRVisionCloudTextRecognizerOptions alloc] init];
    options.languageHints = @[@"en", @"hi"];
    FIRVisionTextRecognizer *textRecognizer = [vision cloudTextRecognizerWithOptions:options];
  2. Cloud Vision को कॉल करने के लिए, इमेज को base64 एन्कोड की गई स्ट्रिंग के तौर पर फ़ॉर्मैट किया जाना चाहिए. UIImage को प्रोसेस करने के लिए:

    Swift

    guard let imageData = uiImage.jpegData(compressionQuality: 1.0) else { return }
    let base64encodedImage = imageData.base64EncodedString()

    Objective-C

    NSData *imageData = UIImageJPEGRepresentation(uiImage, 1.0f);
    NSString *base64encodedImage =
      [imageData base64EncodedStringWithOptions:NSDataBase64Encoding76CharacterLineLength];
  3. इसके बाद, इमेज को process(_:completion:) तरीके से पास करें:

    Swift

    textRecognizer.process(visionImage) { result, error in
      guard error == nil, let result = result else {
        // ...
        return
      }
    
      // Recognized text
    }

    Objective-C

    [textRecognizer processImage:image
                      completion:^(FIRVisionText *_Nullable result,
                                   NSError *_Nullable error) {
      if (error != nil || result == nil) {
        // ...
        return;
      }
    
      // Recognized text
    }];

2. पहचाने गए टेक्स्ट के ब्लॉक से टेक्स्ट निकालना

अगर टेक्स्ट की पहचान करने की प्रोसेस पूरी हो जाती है, तो यह VisionText ऑब्जेक्ट दिखाएगा. VisionText ऑब्जेक्ट में, इमेज में पहचाना गया पूरा टेक्स्ट और शून्य या उससे ज़्यादा VisionTextBlock ऑब्जेक्ट होते हैं.

हर VisionTextBlock, टेक्स्ट के आयताकार ब्लॉक को दिखाता है. इसमें शून्य या उससे ज़्यादा VisionTextLine ऑब्जेक्ट होते हैं. हर VisionTextLine ऑब्जेक्ट में शून्य या उससे ज़्यादा VisionTextElement ऑब्जेक्ट होते हैं. ये ऑब्जेक्ट, शब्दों और शब्द जैसी इकाइयों (तारीखें, संख्याएं वगैरह) को दिखाते हैं.

हर VisionTextBlock, VisionTextLine, और VisionTextElement ऑब्जेक्ट के लिए, आपको क्षेत्र में पहचाना गया टेक्स्ट और क्षेत्र के बाउंडिंग कोऑर्डिनेट मिल सकते हैं.

उदाहरण के लिए:

Swift

let resultText = result.text
for block in result.blocks {
    let blockText = block.text
    let blockConfidence = block.confidence
    let blockLanguages = block.recognizedLanguages
    let blockCornerPoints = block.cornerPoints
    let blockFrame = block.frame
    for line in block.lines {
        let lineText = line.text
        let lineConfidence = line.confidence
        let lineLanguages = line.recognizedLanguages
        let lineCornerPoints = line.cornerPoints
        let lineFrame = line.frame
        for element in line.elements {
            let elementText = element.text
            let elementConfidence = element.confidence
            let elementLanguages = element.recognizedLanguages
            let elementCornerPoints = element.cornerPoints
            let elementFrame = element.frame
        }
    }
}

Objective-C

NSString *resultText = result.text;
for (FIRVisionTextBlock *block in result.blocks) {
  NSString *blockText = block.text;
  NSNumber *blockConfidence = block.confidence;
  NSArray<FIRVisionTextRecognizedLanguage *> *blockLanguages = block.recognizedLanguages;
  NSArray<NSValue *> *blockCornerPoints = block.cornerPoints;
  CGRect blockFrame = block.frame;
  for (FIRVisionTextLine *line in block.lines) {
    NSString *lineText = line.text;
    NSNumber *lineConfidence = line.confidence;
    NSArray<FIRVisionTextRecognizedLanguage *> *lineLanguages = line.recognizedLanguages;
    NSArray<NSValue *> *lineCornerPoints = line.cornerPoints;
    CGRect lineFrame = line.frame;
    for (FIRVisionTextElement *element in line.elements) {
      NSString *elementText = element.text;
      NSNumber *elementConfidence = element.confidence;
      NSArray<FIRVisionTextRecognizedLanguage *> *elementLanguages = element.recognizedLanguages;
      NSArray<NSValue *> *elementCornerPoints = element.cornerPoints;
      CGRect elementFrame = element.frame;
    }
  }
}

अगले चरण


दस्तावेज़ों की इमेज में मौजूद टेक्स्ट की पहचान करना

किसी दस्तावेज़ के टेक्स्ट को पहचानने के लिए, दस्तावेज़ के टेक्स्ट को पहचानने वाले टूल को कॉन्फ़िगर करें और उसे चलाएं. इसके बारे में यहां बताया गया है.

दस्तावेज़ में मौजूद टेक्स्ट को पहचानने वाला एपीआई, नीचे बताया गया है. यह एक ऐसा इंटरफ़ेस उपलब्ध कराता है जो दस्तावेज़ों की इमेज के साथ काम करने के लिए ज़्यादा सुविधाजनक है. हालांकि, अगर आपको Sparse Text API का इंटरफ़ेस पसंद है, तो इसका इस्तेमाल किया जा सकता है. इसके लिए, Cloud Text Recognizer को कॉन्फ़िगर करके, डेंस टेक्स्ट मॉडल का इस्तेमाल करें.

दस्तावेज़ में मौजूद टेक्स्ट की पहचान करने वाले एपीआई का इस्तेमाल करने के लिए:

1. टेक्स्ट आइडेंटिफ़ायर को चालू करना

इमेज को UIImage या CMSampleBufferRef के तौर पर, VisionDocumentTextRecognizer के process(_:completion:) तरीके में पास करें:

  1. cloudDocumentTextRecognizer को कॉल करके, VisionDocumentTextRecognizer का इंस्टेंस पाएं:

    Swift

    let vision = Vision.vision()
    let textRecognizer = vision.cloudDocumentTextRecognizer()
    
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    let options = VisionCloudDocumentTextRecognizerOptions()
    options.languageHints = ["en", "hi"]
    let textRecognizer = vision.cloudDocumentTextRecognizer(options: options)

    Objective-C

    FIRVision *vision = [FIRVision vision];
    FIRVisionDocumentTextRecognizer *textRecognizer = [vision cloudDocumentTextRecognizer];
    
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FIRVisionCloudDocumentTextRecognizerOptions *options =
            [[FIRVisionCloudDocumentTextRecognizerOptions alloc] init];
    options.languageHints = @[@"en", @"hi"];
    FIRVisionDocumentTextRecognizer *textRecognizer = [vision cloudDocumentTextRecognizerWithOptions:options];
  2. Cloud Vision को कॉल करने के लिए, इमेज को base64 एन्कोड की गई स्ट्रिंग के तौर पर फ़ॉर्मैट किया जाना चाहिए. UIImage को प्रोसेस करने के लिए:

    Swift

    guard let imageData = uiImage.jpegData(compressionQuality: 1.0) else { return }
    let base64encodedImage = imageData.base64EncodedString()

    Objective-C

    NSData *imageData = UIImageJPEGRepresentation(uiImage, 1.0f);
    NSString *base64encodedImage =
      [imageData base64EncodedStringWithOptions:NSDataBase64Encoding76CharacterLineLength];
  3. इसके बाद, इमेज को process(_:completion:) तरीके से पास करें:

    Swift

    textRecognizer.process(visionImage) { result, error in
      guard error == nil, let result = result else {
        // ...
        return
      }
    
      // Recognized text
    }

    Objective-C

    [textRecognizer processImage:image
                      completion:^(FIRVisionDocumentText *_Nullable result,
                                   NSError *_Nullable error) {
      if (error != nil || result == nil) {
        // ...
        return;
      }
    
        // Recognized text
    }];

2. पहचाने गए टेक्स्ट के ब्लॉक से टेक्स्ट निकालना

अगर टेक्स्ट की पहचान करने की प्रोसेस पूरी हो जाती है, तो यह VisionDocumentText ऑब्जेक्ट दिखाएगा. VisionDocumentText ऑब्जेक्ट में, इमेज में पहचाना गया पूरा टेक्स्ट और ऑब्जेक्ट का क्रम शामिल होता है. इससे पहचाने गए दस्तावेज़ के स्ट्रक्चर का पता चलता है:

हर VisionDocumentTextBlock, VisionDocumentTextParagraph, VisionDocumentTextWord, और VisionDocumentTextSymbol ऑब्जेक्ट के लिए, आपको उस क्षेत्र में पहचाना गया टेक्स्ट और उस क्षेत्र के बाउंडिंग कोऑर्डिनेट मिल सकते हैं.

उदाहरण के लिए:

Swift

let resultText = result.text
for block in result.blocks {
    let blockText = block.text
    let blockConfidence = block.confidence
    let blockRecognizedLanguages = block.recognizedLanguages
    let blockBreak = block.recognizedBreak
    let blockCornerPoints = block.cornerPoints
    let blockFrame = block.frame
    for paragraph in block.paragraphs {
        let paragraphText = paragraph.text
        let paragraphConfidence = paragraph.confidence
        let paragraphRecognizedLanguages = paragraph.recognizedLanguages
        let paragraphBreak = paragraph.recognizedBreak
        let paragraphCornerPoints = paragraph.cornerPoints
        let paragraphFrame = paragraph.frame
        for word in paragraph.words {
            let wordText = word.text
            let wordConfidence = word.confidence
            let wordRecognizedLanguages = word.recognizedLanguages
            let wordBreak = word.recognizedBreak
            let wordCornerPoints = word.cornerPoints
            let wordFrame = word.frame
            for symbol in word.symbols {
                let symbolText = symbol.text
                let symbolConfidence = symbol.confidence
                let symbolRecognizedLanguages = symbol.recognizedLanguages
                let symbolBreak = symbol.recognizedBreak
                let symbolCornerPoints = symbol.cornerPoints
                let symbolFrame = symbol.frame
            }
        }
    }
}

Objective-C

NSString *resultText = result.text;
for (FIRVisionDocumentTextBlock *block in result.blocks) {
  NSString *blockText = block.text;
  NSNumber *blockConfidence = block.confidence;
  NSArray<FIRVisionTextRecognizedLanguage *> *blockRecognizedLanguages = block.recognizedLanguages;
  FIRVisionTextRecognizedBreak *blockBreak = block.recognizedBreak;
  CGRect blockFrame = block.frame;
  for (FIRVisionDocumentTextParagraph *paragraph in block.paragraphs) {
    NSString *paragraphText = paragraph.text;
    NSNumber *paragraphConfidence = paragraph.confidence;
    NSArray<FIRVisionTextRecognizedLanguage *> *paragraphRecognizedLanguages = paragraph.recognizedLanguages;
    FIRVisionTextRecognizedBreak *paragraphBreak = paragraph.recognizedBreak;
    CGRect paragraphFrame = paragraph.frame;
    for (FIRVisionDocumentTextWord *word in paragraph.words) {
      NSString *wordText = word.text;
      NSNumber *wordConfidence = word.confidence;
      NSArray<FIRVisionTextRecognizedLanguage *> *wordRecognizedLanguages = word.recognizedLanguages;
      FIRVisionTextRecognizedBreak *wordBreak = word.recognizedBreak;
      CGRect wordFrame = word.frame;
      for (FIRVisionDocumentTextSymbol *symbol in word.symbols) {
        NSString *symbolText = symbol.text;
        NSNumber *symbolConfidence = symbol.confidence;
        NSArray<FIRVisionTextRecognizedLanguage *> *symbolRecognizedLanguages = symbol.recognizedLanguages;
        FIRVisionTextRecognizedBreak *symbolBreak = symbol.recognizedBreak;
        CGRect symbolFrame = symbol.frame;
      }
    }
  }
}

अगले चरण