التعرّف على النص في "صور Google" باستخدام تعلُّم الآلة في Firebase على نظام التشغيل iOS

يمكنك استخدام Firebase ML للتعرّف على النص في الصور. تتضمّن حزمة Firebase ML واجهة برمجة تطبيقات للأغراض العامة مناسبة للتعرّف على النص في الصور، مثل نص إشارة شارع، وواجهة برمجة تطبيقات محسَّنة للتعرّف على نص المستندات.

قبل البدء

    إذا لم يسبق لك إضافة Firebase إلى تطبيقك، يمكنك إجراء ذلك باتّباع الخطوات الواردة في دليل بدء الاستخدام.

    استخدِم أداة Swift Package Manager لتثبيت الموارد الاعتمادية في Firebase وإدارتها.

    1. في Xcode، بعد فتح مشروع تطبيقك، انتقِل إلى ملف (File) > إضافة حِزم (Add Packages).
    2. عندما يُطلب منك ذلك، أضِف مستودع حزمة تطوير البرامج (SDK) لمنصة Firebase على أجهزة Apple:
    3.   https://github.com/firebase/firebase-ios-sdk.git
    4. اختَر مكتبة Firebase ML.
    5. أضِف العلامة -ObjC إلى قسم علامات الربط الأخرى في إعدادات الإصدار الخاص بالكائن المستهدَف.
    6. بعد الانتهاء، سيبدأ Xcode تلقائيًا في حلّ التبعيات وتنزيلها في الخلفية.

    بعد ذلك، عليك إجراء بعض خطوات الإعداد داخل التطبيق:

    1. في تطبيقك، استورِد Firebase:

      Swift

      import FirebaseMLModelDownloader

      Objective-C

      @import FirebaseMLModelDownloader;
  1. إذا لم يسبق لك تفعيل واجهات برمجة التطبيقات المستنِدة إلى السحابة الإلكترونية لمشروعك، عليك إجراء ذلك الآن:

    1. افتح Firebase ML صفحة واجهات برمجة التطبيقات في وحدة تحكّم Firebase.
    2. إذا لم يسبق لك ترقية مشروعك إلى خطة أسعار Blaze بنظام الدفع حسب الاستخدام، انقر على ترقية لإجراء ذلك. (لن يُطلب منك الترقية إلا إذا لم يكن مشروعك مشتركًا في خطة أسعار Blaze).

      يمكن للمشاريع التي تستخدم خطة التسعير Blaze فقط استخدام واجهات برمجة التطبيقات المستندة إلى السحابة الإلكترونية.

    3. إذا لم تكن واجهات برمجة التطبيقات المستندة إلى السحابة الإلكترونية مفعّلة، انقر على تفعيل واجهات برمجة التطبيقات المستندة إلى السحابة الإلكترونية.

أنت الآن جاهز لبدء التعرّف على النص في الصور.

إرشادات حول الصور المدخَلة

  • لكي تتعرّف Firebase ML على النص بدقة، يجب أن تحتوي الصور المدخلة على نص يتم تمثيله بواسطة بيانات وحدات بكسل كافية. من المفترض أن يكون حجم كل حرف 16×16 بكسل على الأقل بالنسبة إلى النصوص اللاتينية. بالنسبة إلى النصوص الصينية واليابانية والكورية، يجب أن يبلغ حجم كل حرف 24 × 24 بكسل. وبالنسبة إلى جميع اللغات، لا تتحسّن الدقة بشكل عام إذا كان حجم الأحرف أكبر من 24 × 24 بكسل.

    على سبيل المثال، قد تكون صورة بحجم 640x480 مناسبة لمسح بطاقة عمل ضوئيًا تشغل العرض الكامل للصورة. لمسح مستند ضوئيًا مطبوع على ورق بحجم Letter، قد تحتاج إلى صورة بحجم 720x1280 بكسل.

  • يمكن أن يؤدي عدم وضوح الصورة إلى انخفاض دقة التعرّف على النص. إذا لم تحصل على نتائج مقبولة، اطلب من المستخدم إعادة التقاط الصورة.


التعرّف على النص في الصور

للتعرّف على النص في صورة، شغِّل أداة التعرّف على النص كما هو موضّح أدناه.

1. تشغيل أداة التعرّف على النص

مرِّر الصورة كـ UIImage أو CMSampleBufferRef إلى طريقة process(_:completion:) في VisionTextRecognizer:

  1. يمكنك الحصول على مثيل من VisionTextRecognizer من خلال استدعاء cloudTextRecognizer:

    Swift

    let vision = Vision.vision()
    let textRecognizer = vision.cloudTextRecognizer()
    
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    let options = VisionCloudTextRecognizerOptions()
    options.languageHints = ["en", "hi"]
    let textRecognizer = vision.cloudTextRecognizer(options: options)

    Objective-C

    FIRVision *vision = [FIRVision vision];
    FIRVisionTextRecognizer *textRecognizer = [vision cloudTextRecognizer];
    
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FIRVisionCloudTextRecognizerOptions *options =
            [[FIRVisionCloudTextRecognizerOptions alloc] init];
    options.languageHints = @[@"en", @"hi"];
    FIRVisionTextRecognizer *textRecognizer = [vision cloudTextRecognizerWithOptions:options];
  2. لاستدعاء Cloud Vision، يجب تنسيق الصورة كسلسلة مرمّزة بترميز base64. لمعالجة UIImage، اتّبِع الخطوات التالية:

    Swift

    guard let imageData = uiImage.jpegData(compressionQuality: 1.0) else { return }
    let base64encodedImage = imageData.base64EncodedString()

    Objective-C

    NSData *imageData = UIImageJPEGRepresentation(uiImage, 1.0f);
    NSString *base64encodedImage =
      [imageData base64EncodedStringWithOptions:NSDataBase64Encoding76CharacterLineLength];
  3. بعد ذلك، مرِّر الصورة إلى طريقة process(_:completion:):

    Swift

    textRecognizer.process(visionImage) { result, error in
      guard error == nil, let result = result else {
        // ...
        return
      }
    
      // Recognized text
    }

    Objective-C

    [textRecognizer processImage:image
                      completion:^(FIRVisionText *_Nullable result,
                                   NSError *_Nullable error) {
      if (error != nil || result == nil) {
        // ...
        return;
      }
    
      // Recognized text
    }];

2. استخراج النص من كتل النص التي تم التعرّف عليها

في حال نجاح عملية التعرّف على النص، سيتم عرض عنصر VisionText. يحتوي كائن VisionText على النص الكامل الذي تم التعرّف عليه في الصورة، بالإضافة إلى صفر أو أكثر من كائنات VisionTextBlock.

يمثّل كل VisionTextBlock مستطيلاً نصيًا يحتوي على صفر أو أكثر من عناصر VisionTextLine. يحتوي كل عنصر VisionTextLine على صفر أو أكثر من عناصر VisionTextElement، التي تمثّل الكلمات والكيانات الشبيهة بالكلمات (التواريخ والأرقام وما إلى ذلك).

بالنسبة إلى كل عنصر من عناصر VisionTextBlock وVisionTextLine وVisionTextElement، يمكنك الحصول على النص الذي تم التعرّف عليه في المنطقة وإحداثيات حدود المنطقة.

على سبيل المثال:

Swift

let resultText = result.text
for block in result.blocks {
    let blockText = block.text
    let blockConfidence = block.confidence
    let blockLanguages = block.recognizedLanguages
    let blockCornerPoints = block.cornerPoints
    let blockFrame = block.frame
    for line in block.lines {
        let lineText = line.text
        let lineConfidence = line.confidence
        let lineLanguages = line.recognizedLanguages
        let lineCornerPoints = line.cornerPoints
        let lineFrame = line.frame
        for element in line.elements {
            let elementText = element.text
            let elementConfidence = element.confidence
            let elementLanguages = element.recognizedLanguages
            let elementCornerPoints = element.cornerPoints
            let elementFrame = element.frame
        }
    }
}

Objective-C

NSString *resultText = result.text;
for (FIRVisionTextBlock *block in result.blocks) {
  NSString *blockText = block.text;
  NSNumber *blockConfidence = block.confidence;
  NSArray<FIRVisionTextRecognizedLanguage *> *blockLanguages = block.recognizedLanguages;
  NSArray<NSValue *> *blockCornerPoints = block.cornerPoints;
  CGRect blockFrame = block.frame;
  for (FIRVisionTextLine *line in block.lines) {
    NSString *lineText = line.text;
    NSNumber *lineConfidence = line.confidence;
    NSArray<FIRVisionTextRecognizedLanguage *> *lineLanguages = line.recognizedLanguages;
    NSArray<NSValue *> *lineCornerPoints = line.cornerPoints;
    CGRect lineFrame = line.frame;
    for (FIRVisionTextElement *element in line.elements) {
      NSString *elementText = element.text;
      NSNumber *elementConfidence = element.confidence;
      NSArray<FIRVisionTextRecognizedLanguage *> *elementLanguages = element.recognizedLanguages;
      NSArray<NSValue *> *elementCornerPoints = element.cornerPoints;
      CGRect elementFrame = element.frame;
    }
  }
}

الخطوات التالية


التعرّف على النص في صور المستندات

للتعرّف على نص مستند، اضبط مشغّل التعرّف على نص المستند وشغِّله كما هو موضّح أدناه.

توفّر واجهة برمجة التطبيقات للتعرّف على نص المستندات، الموضّحة أدناه، واجهة تهدف إلى تسهيل التعامل مع صور المستندات. ومع ذلك، إذا كنت تفضّل الواجهة التي توفّرها واجهة برمجة التطبيقات الخاصة بالنص المتفرّق، يمكنك استخدامها بدلاً من ذلك لفحص المستندات من خلال ضبط أداة التعرّف على النص في السحابة الإلكترونية على استخدام نموذج النص الكثيف.

لاستخدام واجهة برمجة التطبيقات للتعرّف على نص المستند، اتّبِع الخطوات التالية:

1. تشغيل أداة التعرّف على النص

مرِّر الصورة كـ UIImage أو CMSampleBufferRef إلى طريقة process(_:completion:) في VisionDocumentTextRecognizer:

  1. يمكنك الحصول على مثيل من VisionDocumentTextRecognizer من خلال استدعاء cloudDocumentTextRecognizer:

    Swift

    let vision = Vision.vision()
    let textRecognizer = vision.cloudDocumentTextRecognizer()
    
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    let options = VisionCloudDocumentTextRecognizerOptions()
    options.languageHints = ["en", "hi"]
    let textRecognizer = vision.cloudDocumentTextRecognizer(options: options)

    Objective-C

    FIRVision *vision = [FIRVision vision];
    FIRVisionDocumentTextRecognizer *textRecognizer = [vision cloudDocumentTextRecognizer];
    
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FIRVisionCloudDocumentTextRecognizerOptions *options =
            [[FIRVisionCloudDocumentTextRecognizerOptions alloc] init];
    options.languageHints = @[@"en", @"hi"];
    FIRVisionDocumentTextRecognizer *textRecognizer = [vision cloudDocumentTextRecognizerWithOptions:options];
  2. لاستدعاء Cloud Vision، يجب تنسيق الصورة كسلسلة مرمّزة بترميز base64. لمعالجة UIImage، اتّبِع الخطوات التالية:

    Swift

    guard let imageData = uiImage.jpegData(compressionQuality: 1.0) else { return }
    let base64encodedImage = imageData.base64EncodedString()

    Objective-C

    NSData *imageData = UIImageJPEGRepresentation(uiImage, 1.0f);
    NSString *base64encodedImage =
      [imageData base64EncodedStringWithOptions:NSDataBase64Encoding76CharacterLineLength];
  3. بعد ذلك، مرِّر الصورة إلى طريقة process(_:completion:):

    Swift

    textRecognizer.process(visionImage) { result, error in
      guard error == nil, let result = result else {
        // ...
        return
      }
    
      // Recognized text
    }

    Objective-C

    [textRecognizer processImage:image
                      completion:^(FIRVisionDocumentText *_Nullable result,
                                   NSError *_Nullable error) {
      if (error != nil || result == nil) {
        // ...
        return;
      }
    
        // Recognized text
    }];

2. استخراج النص من كتل النص التي تم التعرّف عليها

في حال نجاح عملية التعرّف على النص، سيتم عرض عنصر VisionDocumentText. يحتوي عنصر VisionDocumentText على النص الكامل الذي تم التعرّف عليه في الصورة وعلى تسلسل هرمي للعناصر يعكس بنية المستند الذي تم التعرّف عليه:

بالنسبة إلى كل عنصر من عناصر VisionDocumentTextBlock وVisionDocumentTextParagraph وVisionDocumentTextWord وVisionDocumentTextSymbol، يمكنك الحصول على النص الذي تم التعرّف عليه في المنطقة وإحداثيات حدود المنطقة.

على سبيل المثال:

Swift

let resultText = result.text
for block in result.blocks {
    let blockText = block.text
    let blockConfidence = block.confidence
    let blockRecognizedLanguages = block.recognizedLanguages
    let blockBreak = block.recognizedBreak
    let blockCornerPoints = block.cornerPoints
    let blockFrame = block.frame
    for paragraph in block.paragraphs {
        let paragraphText = paragraph.text
        let paragraphConfidence = paragraph.confidence
        let paragraphRecognizedLanguages = paragraph.recognizedLanguages
        let paragraphBreak = paragraph.recognizedBreak
        let paragraphCornerPoints = paragraph.cornerPoints
        let paragraphFrame = paragraph.frame
        for word in paragraph.words {
            let wordText = word.text
            let wordConfidence = word.confidence
            let wordRecognizedLanguages = word.recognizedLanguages
            let wordBreak = word.recognizedBreak
            let wordCornerPoints = word.cornerPoints
            let wordFrame = word.frame
            for symbol in word.symbols {
                let symbolText = symbol.text
                let symbolConfidence = symbol.confidence
                let symbolRecognizedLanguages = symbol.recognizedLanguages
                let symbolBreak = symbol.recognizedBreak
                let symbolCornerPoints = symbol.cornerPoints
                let symbolFrame = symbol.frame
            }
        }
    }
}

Objective-C

NSString *resultText = result.text;
for (FIRVisionDocumentTextBlock *block in result.blocks) {
  NSString *blockText = block.text;
  NSNumber *blockConfidence = block.confidence;
  NSArray<FIRVisionTextRecognizedLanguage *> *blockRecognizedLanguages = block.recognizedLanguages;
  FIRVisionTextRecognizedBreak *blockBreak = block.recognizedBreak;
  CGRect blockFrame = block.frame;
  for (FIRVisionDocumentTextParagraph *paragraph in block.paragraphs) {
    NSString *paragraphText = paragraph.text;
    NSNumber *paragraphConfidence = paragraph.confidence;
    NSArray<FIRVisionTextRecognizedLanguage *> *paragraphRecognizedLanguages = paragraph.recognizedLanguages;
    FIRVisionTextRecognizedBreak *paragraphBreak = paragraph.recognizedBreak;
    CGRect paragraphFrame = paragraph.frame;
    for (FIRVisionDocumentTextWord *word in paragraph.words) {
      NSString *wordText = word.text;
      NSNumber *wordConfidence = word.confidence;
      NSArray<FIRVisionTextRecognizedLanguage *> *wordRecognizedLanguages = word.recognizedLanguages;
      FIRVisionTextRecognizedBreak *wordBreak = word.recognizedBreak;
      CGRect wordFrame = word.frame;
      for (FIRVisionDocumentTextSymbol *symbol in word.symbols) {
        NSString *symbolText = symbol.text;
        NSNumber *symbolConfidence = symbol.confidence;
        NSArray<FIRVisionTextRecognizedLanguage *> *symbolRecognizedLanguages = symbol.recognizedLanguages;
        FIRVisionTextRecognizedBreak *symbolBreak = symbol.recognizedBreak;
        CGRect symbolFrame = symbol.frame;
      }
    }
  }
}

الخطوات التالية