หลังจากฝึกโมเดลของคุณเองโดยใช้ AutoML Vision Edge แล้ว คุณจะใช้โมเดลดังกล่าวในแอปเพื่อติดป้ายกำกับรูปภาพได้
การผสานรวมโมเดลที่ฝึกจาก AutoML Vision Edge ทำได้ 2 วิธี ได้แก่ คุณสามารถรวมโมเดลโดยใส่ไว้ในโฟลเดอร์ชิ้นงานของแอป หรือจะดาวน์โหลดจาก Firebase แบบไดนามิกก็ได้
ตัวเลือกการรวมโมเดล | |
---|---|
รวมไว้ในแอป |
|
โฮสต์ด้วย Firebase |
|
ก่อนเริ่มต้น
เพิ่มทรัพยากร Dependency สำหรับคลัง Android ของ ML Kit ลงในไฟล์ Gradle ระดับแอปของโมดูล ซึ่งโดยปกติคือ
app/build.gradle
:สำหรับการรวมโมเดลกับแอปของคุณ ให้ทำดังนี้
dependencies { // ... // Image labeling feature with bundled automl model implementation 'com.google.mlkit:image-labeling-custom:16.3.1' }
หากต้องการดาวน์โหลดโมเดลจาก Firebase แบบไดนามิก ให้เพิ่ม
linkFirebase
Dependency ดังนี้dependencies { // ... // Image labeling feature with automl model downloaded // from firebase implementation 'com.google.mlkit:image-labeling-custom:16.3.1' implementation 'com.google.mlkit:linkfirebase:16.1.0' }
หากต้องการดาวน์โหลดโมเดล ให้ตรวจสอบว่าคุณได้ เพิ่ม Firebase ลงในโปรเจ็กต์ Android แล้ว หากยังไม่ได้ดำเนินการ การดำเนินการนี้ไม่จำเป็นเมื่อคุณรวมโมเดล
1. โหลดโมเดล
กำหนดค่าแหล่งที่มาของโมเดลในเครื่อง
วิธีรวมโมเดลกับแอป
แตกไฟล์โมเดลและข้อมูลเมตาจากที่เก็บถาวร ZIP ที่คุณดาวน์โหลดจากFirebaseคอนโซล เราขอแนะนำให้คุณใช้ไฟล์ตามที่ดาวน์โหลดมาโดยไม่ต้องแก้ไข (รวมถึงชื่อไฟล์)
รวมโมเดลและไฟล์ข้อมูลเมตาของโมเดลไว้ในแพ็กเกจแอป
- หากไม่มีโฟลเดอร์ชิ้นงานในโปรเจ็กต์ ให้สร้างโฟลเดอร์โดยคลิกขวาที่โฟลเดอร์
app/
แล้วคลิกใหม่ > โฟลเดอร์ > โฟลเดอร์ชิ้นงาน - สร้างโฟลเดอร์ย่อยในโฟลเดอร์ชิ้นงานเพื่อเก็บไฟล์โมเดล
- คัดลอกไฟล์
model.tflite
,dict.txt
และmanifest.json
ไปยังโฟลเดอร์ย่อย (ไฟล์ทั้ง 3 ไฟล์ต้องอยู่ในโฟลเดอร์เดียวกัน)
- หากไม่มีโฟลเดอร์ชิ้นงานในโปรเจ็กต์ ให้สร้างโฟลเดอร์โดยคลิกขวาที่โฟลเดอร์
เพิ่มโค้ดต่อไปนี้ลงในไฟล์
build.gradle
ของแอปเพื่อให้แน่ใจว่า Gradle จะไม่บีบอัดไฟล์โมเดลเมื่อสร้างแอปandroid { // ... aaptOptions { noCompress "tflite" } }
ไฟล์โมเดลจะรวมอยู่ในแพ็กเกจแอปและพร้อมใช้งานสำหรับ ML Kit เป็นเนื้อหาดิบ
สร้างออบเจ็กต์
LocalModel
โดยระบุเส้นทางไปยังไฟล์ Manifest ของโมเดลJava
AutoMLImageLabelerLocalModel localModel = new AutoMLImageLabelerLocalModel.Builder() .setAssetFilePath("manifest.json") // or .setAbsoluteFilePath(absolute file path to manifest file) .build();
Kotlin
val localModel = LocalModel.Builder() .setAssetManifestFilePath("manifest.json") // or .setAbsoluteManifestFilePath(absolute file path to manifest file) .build()
กำหนดค่าแหล่งที่มาของโมเดลที่โฮสต์ใน Firebase
หากต้องการใช้โมเดลที่โฮสต์จากระยะไกล ให้สร้างออบเจ็กต์ CustomRemoteModel
โดยระบุชื่อที่คุณกำหนดให้กับโมเดลเมื่อเผยแพร่
Java
// Specify the name you assigned in the Firebase console.
FirebaseModelSource firebaseModelSource =
new FirebaseModelSource.Builder("your_model_name").build();
CustomRemoteModel remoteModel =
new CustomRemoteModel.Builder(firebaseModelSource).build();
Kotlin
// Specify the name you assigned in the Firebase console.
val firebaseModelSource = FirebaseModelSource.Builder("your_model_name")
.build()
val remoteModel = CustomRemoteModel.Builder(firebaseModelSource).build()
จากนั้นเริ่มงานดาวน์โหลดโมเดล โดยระบุเงื่อนไขที่คุณต้องการอนุญาตให้ดาวน์โหลด หากโมเดลไม่ได้อยู่ในอุปกรณ์ หรือหากมีโมเดลเวอร์ชันใหม่กว่า งานจะดาวน์โหลดโมเดลจาก Firebase แบบไม่พร้อมกัน
Java
DownloadConditions downloadConditions = new DownloadConditions.Builder()
.requireWifi()
.build();
RemoteModelManager.getInstance().download(remoteModel, downloadConditions)
.addOnSuccessListener(new OnSuccessListener<Void>() {
@Override
public void onSuccess(@NonNull Task<Void> task) {
// Success.
}
});
Kotlin
val downloadConditions = DownloadConditions.Builder()
.requireWifi()
.build()
RemoteModelManager.getInstance().download(remoteModel, downloadConditions)
.addOnSuccessListener {
// Success.
}
แอปจำนวนมากจะเริ่มงานดาวน์โหลดในโค้ดการเริ่มต้น แต่คุณ สามารถทำได้ทุกเมื่อก่อนที่จะต้องใช้โมเดล
สร้างโปรแกรมติดป้ายกำกับรูปภาพจากโมเดล
หลังจากกำหนดค่าแหล่งที่มาของโมเดลแล้ว ให้สร้างออบเจ็กต์ ImageLabeler
จากแหล่งที่มาใดแหล่งที่มาหนึ่ง
หากมีเฉพาะโมเดลที่รวมไว้ในเครื่อง ให้สร้างโปรแกรมติดป้ายกำกับจากออบเจ็กต์ CustomImageLabelerOptions
และกำหนดค่าเกณฑ์คะแนนความเชื่อมั่นที่คุณต้องการ (ดูประเมินโมเดล)
Java
CustomImageLabelerOptions customImageLabelerOptions = new CustomImageLabelerOptions.Builder(localModel)
.setConfidenceThreshold(0.0f) // Evaluate your model in the Cloud console
// to determine an appropriate value.
.build();
ImageLabeler labeler = ImageLabeling.getClient(customImageLabelerOptions);
Kotlin
val customImageLabelerOptions = CustomImageLabelerOptions.Builder(localModel)
.setConfidenceThreshold(0.0f) // Evaluate your model in the Cloud console
// to determine an appropriate value.
.build()
val labeler = ImageLabeling.getClient(customImageLabelerOptions)
หากมีโมเดลที่โฮสต์จากระยะไกล คุณจะต้องตรวจสอบว่าได้
ดาวน์โหลดโมเดลแล้วก่อนที่จะเรียกใช้ คุณตรวจสอบสถานะของงานดาวน์โหลดโมเดลได้โดยใช้เมธอด isModelDownloaded()
ของตัวจัดการโมเดล
แม้ว่าคุณจะต้องยืนยันเรื่องนี้ก่อนเรียกใช้เครื่องมือติดป้ายกำกับเท่านั้น แต่หากคุณมีทั้งโมเดลที่โฮสต์จากระยะไกลและโมเดลที่รวมไว้ในเครื่อง การตรวจสอบนี้อาจมีประโยชน์เมื่อสร้างอินสแตนซ์ของเครื่องมือติดป้ายกำกับรูปภาพ กล่าวคือ สร้างเครื่องมือติดป้ายกำกับจากโมเดลระยะไกลหากดาวน์โหลดแล้ว และจากโมเดลในเครื่องหากยังไม่ได้ดาวน์โหลด
Java
RemoteModelManager.getInstance().isModelDownloaded(remoteModel)
.addOnSuccessListener(new OnSuccessListener<Boolean>() {
@Override
public void onSuccess(Boolean isDownloaded) {
CustomImageLabelerOptions.Builder optionsBuilder;
if (isDownloaded) {
optionsBuilder = new CustomImageLabelerOptions.Builder(remoteModel);
} else {
optionsBuilder = new CustomImageLabelerOptions.Builder(localModel);
}
CustomImageLabelerOptions options = optionsBuilder
.setConfidenceThreshold(0.0f) // Evaluate your model in the Cloud console
// to determine an appropriate threshold.
.build();
ImageLabeler labeler = ImageLabeling.getClient(options);
}
});
Kotlin
RemoteModelManager.getInstance().isModelDownloaded(remoteModel)
.addOnSuccessListener { isDownloaded ->
val optionsBuilder =
if (isDownloaded) {
CustomImageLabelerOptions.Builder(remoteModel)
} else {
CustomImageLabelerOptions.Builder(localModel)
}
// Evaluate your model in the Cloud console to determine an appropriate threshold.
val options = optionsBuilder.setConfidenceThreshold(0.0f).build()
val labeler = ImageLabeling.getClient(options)
}
หากมีเฉพาะโมเดลที่โฮสต์จากระยะไกล คุณควรปิดใช้ฟังก์ชันการทำงานที่เกี่ยวข้องกับโมเดล เช่น ทำให้ส่วนหนึ่งของ UI เป็นสีเทาหรือซ่อนไว้ จนกว่าคุณจะยืนยันว่าดาวน์โหลดโมเดลแล้ว คุณทำได้โดยแนบ Listener
ไปยังเมธอด download()
ของ Model Manager ดังนี้
Java
RemoteModelManager.getInstance().download(remoteModel, conditions)
.addOnSuccessListener(new OnSuccessListener<Void>() {
@Override
public void onSuccess(Void v) {
// Download complete. Depending on your app, you could enable
// the ML feature, or switch from the local model to the remote
// model, etc.
}
});
Kotlin
RemoteModelManager.getInstance().download(remoteModel, conditions)
.addOnSuccessListener {
// Download complete. Depending on your app, you could enable the ML
// feature, or switch from the local model to the remote model, etc.
}
2. เตรียมรูปภาพอินพุต
จากนั้นสร้างInputImage
ออบเจ็กต์จากรูปภาพสำหรับแต่ละรูปภาพที่ต้องการติดป้ายกำกับ โปรแกรมติดป้ายกำกับรูปภาพจะทำงานได้เร็วที่สุดเมื่อคุณใช้ Bitmap
หรือหากใช้ Camera2 API ก็ใช้ YUV_420_888 media.Image
ซึ่งเป็นรูปแบบที่
แนะนำเมื่อเป็นไปได้
คุณสร้าง InputImage
จากแหล่งที่มาต่างๆ ได้ โดยแต่ละแหล่งที่มามีคำอธิบายอยู่ด้านล่าง
การใช้ media.Image
หากต้องการสร้างออบเจ็กต์ InputImage
จากออบเจ็กต์ media.Image
เช่น เมื่อจับภาพจากกล้องของอุปกรณ์ ให้ส่งออบเจ็กต์ media.Image
และการหมุนของรูปภาพไปยัง InputImage.fromMediaImage()
หากใช้ไลบรารี
CameraX คลาส OnImageCapturedListener
และ
ImageAnalysis.Analyzer
จะคํานวณค่าการหมุน
ให้คุณ
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy?) { val mediaImage = imageProxy?.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees); // Pass image to an ML Kit Vision API // ... } }
หากไม่ได้ใช้คลังกล้องที่ให้องศาการหมุนของรูปภาพ คุณ สามารถคำนวณได้จากองศาการหมุนของอุปกรณ์และการวางแนวของเซ็นเซอร์กล้อง ในอุปกรณ์
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
จากนั้นส่งออบเจ็กต์ media.Image
และค่าองศาการหมุนไปยัง InputImage.fromMediaImage()
:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
การใช้ URI ของไฟล์
หากต้องการสร้างออบเจ็กต์ InputImage
จาก URI ของไฟล์ ให้ส่ง
บริบทของแอปและ URI ของไฟล์ไปยัง
InputImage.fromFilePath()
ซึ่งจะมีประโยชน์เมื่อคุณ
ใช้ACTION_GET_CONTENT
Intent เพื่อแจ้งให้ผู้ใช้เลือก
รูปภาพจากแอปแกลเลอรี
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
การใช้ ByteBuffer
หรือ ByteArray
หากต้องการสร้างออบเจ็กต์ InputImage
จาก ByteBuffer
หรือ ByteArray
ให้คำนวณองศาการหมุนของรูปภาพก่อน
ตามที่อธิบายไว้ก่อนหน้านี้สำหรับอินพุต media.Image
จากนั้นสร้างออบเจ็กต์ InputImage
ด้วยบัฟเฟอร์หรืออาร์เรย์ พร้อมกับความสูง ความกว้าง รูปแบบการเข้ารหัสสี และองศาการหมุนของรูปภาพ
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
การใช้ Bitmap
หากต้องการสร้างออบเจ็กต์ InputImage
จากออบเจ็กต์ Bitmap
ให้ประกาศดังนี้
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
รูปภาพแสดงด้วยออบเจ็กต์ Bitmap
พร้อมกับองศาการหมุน
3. เรียกใช้เครื่องมือติดป้ายกำกับรูปภาพ
หากต้องการติดป้ายกำกับวัตถุในรูปภาพ ให้ส่งimage
วัตถุไปยังเมธอด ImageLabeler
's
process()
Java
labeler.process(image)
.addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() {
@Override
public void onSuccess(List<ImageLabel> labels) {
// Task completed successfully
// ...
}
})
.addOnFailureListener(new OnFailureListener() {
@Override
public void onFailure(@NonNull Exception e) {
// Task failed with an exception
// ...
}
});
Kotlin
labeler.process(image)
.addOnSuccessListener { labels ->
// Task completed successfully
// ...
}
.addOnFailureListener { e ->
// Task failed with an exception
// ...
}
4. ดูข้อมูลเกี่ยวกับออบเจ็กต์ที่มีป้ายกำกับ
หากการติดป้ายกำกับรูปภาพสำเร็จ ระบบจะส่งรายการออบเจ็กต์ ImageLabel
ไปยังเครื่องมือฟังที่สำเร็จ ออบเจ็กต์ ImageLabel
แต่ละรายการแสดงถึง
สิ่งที่ติดป้ายกำกับในรูปภาพ คุณจะดูคำอธิบายข้อความของแต่ละป้ายกำกับ คะแนนความเชื่อมั่นของการจับคู่ และดัชนีของการจับคู่ได้
เช่น
Java
for (ImageLabel label : labels) {
String text = label.getText();
float confidence = label.getConfidence();
int index = label.getIndex();
}
Kotlin
for (label in labels) {
val text = label.text
val confidence = label.confidence
val index = label.index
}
เคล็ดลับในการปรับปรุงประสิทธิภาพแบบเรียลไทม์
หากต้องการติดป้ายกำกับรูปภาพในแอปพลิเคชันแบบเรียลไทม์ ให้ทำตาม หลักเกณฑ์เหล่านี้เพื่อให้ได้อัตราเฟรมที่ดีที่สุด
- จำกัดการเรียกใช้เครื่องมือติดป้ายกำกับรูปภาพ หากเฟรมวิดีโอใหม่พร้อมใช้งานขณะที่โปรแกรมติดป้ายกำกับรูปภาพทำงาน ให้ทิ้งเฟรม ดูตัวอย่างได้ที่คลาส
VisionProcessorBase
ในแอปตัวอย่างฉบับเริ่มต้นอย่างรวดเร็ว - หากคุณใช้เอาต์พุตของเครื่องมือติดป้ายกำกับรูปภาพเพื่อซ้อนทับกราฟิกบน
รูปภาพอินพุต ให้รับผลลัพธ์ก่อน จากนั้นจึงแสดงรูปภาพ
และซ้อนทับในขั้นตอนเดียว การทำเช่นนี้จะทำให้คุณแสดงผลไปยังพื้นผิวการแสดงผล
เพียงครั้งเดียวสำหรับแต่ละเฟรมอินพุต ดูคลาส
CameraSourcePreview
และGraphicOverlay
ในแอปตัวอย่างการเริ่มต้นอย่างรวดเร็วเพื่อดู ตัวอย่าง -
หากใช้ API ของ Camera2 ให้ถ่ายภาพในรูปแบบ
ImageFormat.YUV_420_888
หากใช้ Camera API เวอร์ชันเก่า ให้ถ่ายภาพในรูปแบบ
ImageFormat.NV21