使用机器学习套件检测人脸 (iOS)

您可以使用机器学习套件检测图片和视频中的人脸。

准备工作

  1. 如果您尚未将 Firebase 添加到自己的应用中,请按照入门指南中的步骤执行此操作。
  2. 在 Podfile 中添加机器学习套件库:
    pod 'Firebase/MLVision', '6.25.0'
    # If you want to detect face contours (landmark detection and classification
    # don't require this additional model):
    pod 'Firebase/MLVisionFaceModel', '6.25.0'
    
    在安装或更新项目的 Pod 之后,请务必使用 Xcode 项目的 .xcworkspace 打开该项目。
  3. 在您的应用中导入 Firebase:

    Swift

    import Firebase

    Objective-C

    @import Firebase;

输入图片指南

为了使机器学习套件准确检测人脸,输入图片必须包含由足够像素数据表示的人脸。通常,要在图片中检测的每张人脸应至少为 100x100 像素。如果要检测人脸轮廓,机器学习套件需要更高的分辨率输入:每张人脸应至少为 200x200 像素。

如果您是在实时应用中检测人脸,可能还需要考虑输入图片的整体尺寸。较小图片的处理速度相对较快,因此,为了减少延迟时间,请以较低的分辨率捕获图片(同时需满足上述人脸图片的精度要求),并确保主体的面部在图片中占尽可能大的部分。另请参阅提高实时性能的相关提示

图片聚焦不良会影响准确性。如果您无法获得满意的结果,请尝试让用户重新捕获图片。

人脸相对于相机的方向也会影响机器学习套件检测的面部特征。请参阅人脸检测概念

1. 配置人脸检测器

在对图片进行人脸检测之前,如果要更改人脸检测器的默认设置,请使用 VisionFaceDetectorOptions 对象指定这些设置。您可以更改以下设置:

设置
performanceMode fast(默认)| accurate

在检测人脸时更注重速度还是准确性。

landmarkMode none(默认)| all

是否尝试识别检测到的所有人脸的“特征点”:眼睛、耳朵、鼻子、脸颊、嘴巴。

contourMode none(默认)| all

是否检测面部特征的轮廓。仅检测图片中最突出的人脸的轮廓。

classificationMode none(默认)| all

是否将人脸分为不同类别(例如“微笑”和“睁眼”)。

minFaceSize CGFloat(默认:0.1

需要检测的人脸的大小下限(相对于图片)。

isTrackingEnabled false(默认)| true

是否为人脸分配 ID,以用于跨图片跟踪人脸。

请注意,启用轮廓检测后,仅会检测一张人脸,因此人脸跟踪不会产生有用的结果。如需加快检测速度,请勿同时启用轮廓检测和人脸跟踪。

例如,如以下示例所示,构建 VisionFaceDetectorOptions 对象:

Swift

// High-accuracy landmark detection and face classification
let options = VisionFaceDetectorOptions()
options.performanceMode = .accurate
options.landmarkMode = .all
options.classificationMode = .all

// Real-time contour detection of multiple faces
let options = VisionFaceDetectorOptions()
options.contourMode = .all

Objective-C

// High-accuracy landmark detection and face classification
FIRVisionFaceDetectorOptions *options = [[FIRVisionFaceDetectorOptions alloc] init];
options.performanceMode = FIRVisionFaceDetectorPerformanceModeAccurate;
options.landmarkMode = FIRVisionFaceDetectorLandmarkModeAll;
options.classificationMode = FIRVisionFaceDetectorClassificationModeAll;

// Real-time contour detection of multiple faces
FIRVisionFaceDetectorOptions *options = [[FIRVisionFaceDetectorOptions alloc] init];
options.contourMode = FIRVisionFaceDetectorContourModeAll;

2. 运行人脸检测器

如需检测图片中的人脸,请将图片作为 UIImageCMSampleBufferRef 传递给 VisionFaceDetectordetect(in:) 方法:

  1. 获取 VisionFaceDetector 的一个实例:

    Swift

    lazy var vision = Vision.vision()
    
    let faceDetector = vision.faceDetector(options: options)
    

    Objective-C

    FIRVision *vision = [FIRVision vision];
    FIRVisionFaceDetector *faceDetector = [vision faceDetector];
    // Or, to change the default settings:
    // FIRVisionFaceDetector *faceDetector =
    //     [vision faceDetectorWithOptions:options];
    
  2. 使用 UIImageCMSampleBufferRef 创建一个 VisionImage 对象。

    如需使用 UIImage,请按以下步骤操作:

    1. 在必要时旋转图片,以使其 imageOrientation 属性为 .up
    2. 使用方向正确的 UIImage 创建一个 VisionImage 对象。不要指定任何旋转方式元数据,必须使用默认值 .topLeft

      Swift

      let image = VisionImage(image: uiImage)

      Objective-C

      FIRVisionImage *image = [[FIRVisionImage alloc] initWithImage:uiImage];

    如需使用 CMSampleBufferRef,请按以下步骤操作:

    1. 创建一个 VisionImageMetadata 对象,用其指定 CMSampleBufferRef 缓冲区中所含图片数据的方向。

      如需获取图片方向,请运行以下代码:

      Swift

      func imageOrientation(
          deviceOrientation: UIDeviceOrientation,
          cameraPosition: AVCaptureDevice.Position
          ) -> VisionDetectorImageOrientation {
          switch deviceOrientation {
          case .portrait:
              return cameraPosition == .front ? .leftTop : .rightTop
          case .landscapeLeft:
              return cameraPosition == .front ? .bottomLeft : .topLeft
          case .portraitUpsideDown:
              return cameraPosition == .front ? .rightBottom : .leftBottom
          case .landscapeRight:
              return cameraPosition == .front ? .topRight : .bottomRight
          case .faceDown, .faceUp, .unknown:
              return .leftTop
          }
      }

      Objective-C

      - (FIRVisionDetectorImageOrientation)
          imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation
                                 cameraPosition:(AVCaptureDevicePosition)cameraPosition {
        switch (deviceOrientation) {
          case UIDeviceOrientationPortrait:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationLeftTop;
            } else {
              return FIRVisionDetectorImageOrientationRightTop;
            }
          case UIDeviceOrientationLandscapeLeft:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationBottomLeft;
            } else {
              return FIRVisionDetectorImageOrientationTopLeft;
            }
          case UIDeviceOrientationPortraitUpsideDown:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationRightBottom;
            } else {
              return FIRVisionDetectorImageOrientationLeftBottom;
            }
          case UIDeviceOrientationLandscapeRight:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationTopRight;
            } else {
              return FIRVisionDetectorImageOrientationBottomRight;
            }
          default:
            return FIRVisionDetectorImageOrientationTopLeft;
        }
      }

      然后,创建元数据对象:

      Swift

      let cameraPosition = AVCaptureDevice.Position.back  // Set to the capture device you used.
      let metadata = VisionImageMetadata()
      metadata.orientation = imageOrientation(
          deviceOrientation: UIDevice.current.orientation,
          cameraPosition: cameraPosition
      )

      Objective-C

      FIRVisionImageMetadata *metadata = [[FIRVisionImageMetadata alloc] init];
      AVCaptureDevicePosition cameraPosition =
          AVCaptureDevicePositionBack;  // Set to the capture device you used.
      metadata.orientation =
          [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation
                                       cameraPosition:cameraPosition];
    2. 使用 CMSampleBufferRef 对象和旋转方式元数据创建一个 VisionImage 对象:

      Swift

      let image = VisionImage(buffer: sampleBuffer)
      image.metadata = metadata

      Objective-C

      FIRVisionImage *image = [[FIRVisionImage alloc] initWithBuffer:sampleBuffer];
      image.metadata = metadata;
  3. 然后,将图片传递给 detect(in:) 方法:

    Swift

    faceDetector.process(visionImage) { faces, error in
      guard error == nil, let faces = faces, !faces.isEmpty else {
        // ...
        return
      }
    
      // Faces detected
      // ...
    }
    

    Objective-C

    [faceDetector detectInImage:image
                     completion:^(NSArray<FIRVisionFace *> *faces,
                                  NSError *error) {
      if (error != nil) {
        return;
      } else if (faces != nil) {
        // Recognized faces
      }
    }];
    

3. 获取检测到的人脸的相关信息

如果人脸检测操作成功,人脸检测器会向完成处理程序传递一组 VisionFace 对象。每个 VisionFace 对象都代表在图片中检测到的一张人脸。对于每张人脸,您可以获取它在输入图片中的边界坐标,以及您已配置人脸检测器所要查找的任何其他信息。例如:

Swift

for face in faces {
  let frame = face.frame
  if face.hasHeadEulerAngleY {
    let rotY = face.headEulerAngleY  // Head is rotated to the right rotY degrees
  }
  if face.hasHeadEulerAngleZ {
    let rotZ = face.headEulerAngleZ  // Head is rotated upward rotZ degrees
  }

  // If landmark detection was enabled (mouth, ears, eyes, cheeks, and
  // nose available):
  if let leftEye = face.landmark(ofType: .leftEye) {
    let leftEyePosition = leftEye.position
  }

  // If contour detection was enabled:
  if let leftEyeContour = face.contour(ofType: .leftEye) {
    let leftEyePoints = leftEyeContour.points
  }
  if let upperLipBottomContour = face.contour(ofType: .upperLipBottom) {
    let upperLipBottomPoints = upperLipBottomContour.points
  }

  // If classification was enabled:
  if face.hasSmilingProbability {
    let smileProb = face.smilingProbability
  }
  if face.hasRightEyeOpenProbability {
    let rightEyeOpenProb = face.rightEyeOpenProbability
  }

  // If face tracking was enabled:
  if face.hasTrackingID {
    let trackingId = face.trackingID
  }
}

Objective-C

for (FIRVisionFace *face in faces) {
  // Boundaries of face in image
  CGRect frame = face.frame;

  if (face.hasHeadEulerAngleY) {
    CGFloat rotY = face.headEulerAngleY;  // Head is rotated to the right rotY degrees
  }
  if (face.hasHeadEulerAngleZ) {
    CGFloat rotZ = face.headEulerAngleZ;  // Head is tilted sideways rotZ degrees
  }

  // If landmark detection was enabled (mouth, ears, eyes, cheeks, and
  // nose available):
  FIRVisionFaceLandmark *leftEar = [face landmarkOfType:FIRFaceLandmarkTypeLeftEar];
  if (leftEar != nil) {
    FIRVisionPoint *leftEarPosition = leftEar.position;
  }

  // If contour detection was enabled:
  FIRVisionFaceContour *upperLipBottomContour = [face contourOfType:FIRFaceContourTypeUpperLipBottom];
  if (upperLipBottomContour != nil) {
    NSArray<FIRVisionPoint *> *upperLipBottomPoints = upperLipBottomContour.points;
    if (upperLipBottomPoints.count > 0) {
      NSLog("Detected the bottom contour of the subject's upper lip.")
    }
  }

  // If classification was enabled:
  if (face.hasSmilingProbability) {
    CGFloat smileProb = face.smilingProbability;
  }
  if (face.hasRightEyeOpenProbability) {
    CGFloat rightEyeOpenProb = face.rightEyeOpenProbability;
  }

  // If face tracking was enabled:
  if (face.hasTrackingID) {
    NSInteger trackingID = face.trackingID;
  }
}

人脸轮廓的示例

启用人脸轮廓检测后,对于检测到的每个面部特征,您会获得一系列点。这些点表示特征的形状。如需详细了解轮廓的表示方式,请参阅人脸检测概念概览

下图展示了这些点与人脸的对应情况(点击图片可放大):

实时人脸检测

如果要在实时应用中使用人脸检测,请遵循以下准则以实现最佳帧速率:

  • 人脸检测器配置为使用人脸轮廓检测或分类和特征点检测,但不能同时使用这二者:

    轮廓检测
    特征点检测
    分类
    特征点检测和分类
    轮廓检测和特征点检测
    轮廓检测和分类
    轮廓检测、特征点检测和分类

  • 启用 fast 模式(默认情况下启用)。

  • 建议以较低分辨率捕获图片,同时也要牢记此 API 的图片尺寸要求。

  • 限制检测器的调用次数。如果在检测器运行时有新的视频帧可用,请丢弃该帧。
  • 如果要将检测器的输出作为图形叠加在输入图片上,请先从机器学习套件获取结果,然后在一个步骤中完成图片的呈现和叠加。采用这一方法,每个输入帧只需在显示表面呈现一次。如需查看示例,请参阅示例应用中的 previewOverlayViewFIRDetectionOverlayView 类。